

Section 4 - Topic 8
Solving Quadratic Equations Using the Quadratic Formula - Part 1

$$
\begin{aligned}
& \left(\frac{b}{a} \cdot \frac{1}{2}\right)^{2} \\
& \left(\frac{b}{2 a}\right)^{2}
\end{aligned}
$$

Consider a quadratic equation in standard form.

$$
\sqrt{Y_{a}^{2}}=2 a \quad y=a x^{2}+b x+c \quad a x^{2}+b x=-c
$$

We can use completing the square to derive the quadratic formula. $\quad 4 a$

$$
x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}=\left(-\frac{c}{a}\right)+\frac{b^{2}}{4 a^{2}}
$$

$$
x^{2}+\frac{b}{a} x+\frac{b^{2}}{4 a^{2}}=\frac{-4 a c}{4 a^{2}}+\frac{b^{2}}{4 a^{2}}
$$

$$
\begin{aligned}
& x+\frac{b}{2 a}=\frac{ \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\operatorname{ta} x+\frac{b}{a a} a^{2} \\
4 a-\frac{a b}{4 a^{2}}+\frac{b}{4 a^{2}} \\
\left(x+\frac{b}{2 a}\right)^{2}=
\end{array}=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a b^{2}}}{4 a^{2}}
\end{aligned}
$$

When must you use completing formula to solve a quadratic?
When the quadratic can' ta be fared

Let's Practice!

1. Solve the following equations using the quadratic formula.
a. $\begin{aligned} & \frac{1}{4} x^{2}-x+\frac{1}{2}=0\end{aligned}$

section 4 topic 8 solving quadratic equations using the quadratic formula partJamt180
b. $(a+2)^{2}=2 a$
$(a+2)(a+2)=2 a$
$a^{2}+2 a+2 a+4=2 a$ $a^{2}+4 a+4=2 a$
$a^{2}+2 a+4=0$
$\frac{-2 \pm \sqrt{(2)^{2}-4(1)(4)}}{2(1)}$
$\frac{-2 \pm \sqrt{4-16}}{2}$

$$
\frac{2 \pm \sqrt{-12}}{2}
$$

$$
\begin{aligned}
& \sqrt{-12} \\
& i \sqrt{12} \\
& \wedge
\end{aligned}
$$

$$
i \sqrt{4} \sqrt{3}
$$

$$
2 i \sqrt{3}
$$

Try It!
2. Solve the following equations using the quadratic formula.
a. $\frac{2}{5} m^{2}+\frac{1}{5} m+3=0$

b. $\left(b-\frac{1}{2}\right)^{2}=\frac{b}{2}$

$$
\begin{aligned}
& \left(b-\frac{1}{2}\right)\left(b-\frac{1}{2}\right)=\frac{b}{2} \\
& b^{2}-\frac{1}{2} b-\frac{1}{2} b+\frac{1}{4}=\frac{b}{2} \\
& b^{2}-\frac{b}{-\frac{b}{2}}=\frac{1}{4}=\frac{-b}{2} \\
& b^{2}-\frac{3}{2} b+\frac{1}{4}=0
\end{aligned}
$$

$$
\frac{\frac{3}{2} \pm \sqrt{\left(-\frac{3}{2}\right)^{2}-4(1)\left(\frac{1}{4}\right)}}{2(1)}
$$

$$
\frac{\frac{3}{2} \pm \sqrt{\frac{9}{4}-X\left(\frac{4}{4}\right)}}{2}=\frac{\frac{3}{2} \pm \sqrt{\frac{5}{4}}}{2}
$$

$$
\frac{\left(\frac{3}{2} \pm \frac{\sqrt{5}}{2}\right) \cdot \frac{1}{2}}{(-2) \frac{1}{2}}=\frac{3}{4} \pm \frac{\sqrt{5}}{4}
$$

