Section 4 - Topic 9

Solving Quadratic Equations Using the Quadratic Formula - Part 2

We can also use the quadratic formula to solve real-world problems.

$$
x^{2}+\left(x^{2}+16 x+64\right)=3136
$$

Let's Practice!

1. Charles lives on a golf course on a corner lot. Often,

$$
\begin{array}{r}
2 x^{2}+16 x+64=3136 \\
3136=3136
\end{array}
$$ golfers cut across his lot to save walking distance. Given the diagram below, approximate - to the nearest meter how many meters of walking distance are saved by

$$
2 x^{2}+16 x-3072=0
$$ cutting across their property instead of walking around the lot.

$$
\begin{aligned}
& a^{2+} b^{2}=c^{2} \\
& x^{2}+(x+8)^{2}=51^{2}
\end{aligned}
$$

BEAT THE TEST!
Consider the quadratic equation shown.

$$
-5 x^{2}+7 x-8=(2 x+1)^{2}
$$

Pick values from the left column to write them in the boxes to complete the solution to the equation.

-6

$$
\frac{-1 \pm i \sqrt{35}}{-6}=
$$

2. The Lower Falls in the Grand Canyon have a height of 308 feet. A pebble is thrown upward from the top of the falls with an initial velocity of 15 feet per second. Assume there is no air resistance.

Part A: How many seconds will it take the pebble to hit the ground? Round your answer to the nearest tenth of a second.

$$
\begin{aligned}
& -16 t^{2}+15 t+308=0 \\
& \frac{-15 \pm \sqrt{(-15)^{2}-4(-16)(308)}}{2(-16}=\frac{-15 \pm \sqrt{225+19712}}{-32}=\frac{-15 \pm \sqrt{19937}}{-32} \\
& \frac{-15 \pm 141.2}{-32} \quad \frac{-15-141.2}{-32}=\frac{-156.2}{-32}=4.9 \text { seconds }
\end{aligned}
$$

Part B: How long after the pebble is thrown will it be 75 feet from the ground? Round your answer to the nearest tenth of a second.

$$
\begin{aligned}
&-16 t^{2}+15 t+308=75 \\
&-75-75 \\
&-16 t^{2}+15 t+233=6 \\
& \frac{-15 \pm \sqrt{225-4(-16)(233)}}{-32}=\frac{-15 \pm \sqrt{225+14912}}{-32}=\frac{-15 \pm \sqrt{15137}}{-32} \\
& \frac{-15 \pm 122.11}{-32} \frac{-15-122.11}{-32}=\frac{-137.11}{-32}=4.3 \mathrm{secmods}
\end{aligned}
$$

