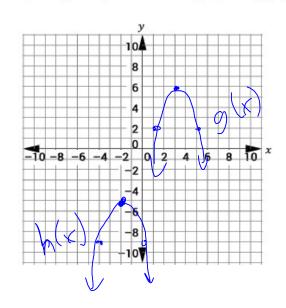
Transformations of Quadratic Functions

q(x) = p(x - 2) + 3 is the transformation of the function $p(x) = (x - 5)^2 + 1$. Write the function for q(x).

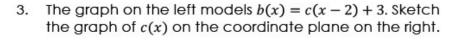

Vertex p(x) = (5,1)transformation: right 2, ψ^3 Vertex q(x) = (7,4) $q(x) = (x-7)^2 + 4$ s(x) = r(x+3) - 5 is the transformation of the function $r(x) = x^2 - 4$. Write the function for s(x). r(x) = (0, -4) transformation lefts down5 vertex s(x) (-3, -9)vertex $s(x) = (x+3)^2 - 9$

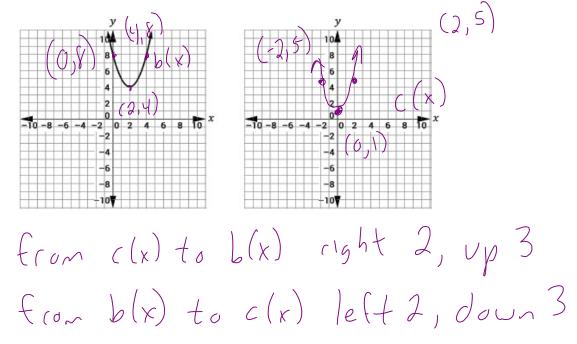
Let's Practice!

1. Consider the function below.

$$h(x) = -(x+2)^2 - 5$$

If g(x) = h(x - 5) + 11, sketch the graph of g(x).




$$h(x) vertex
(-2,-5)
(0,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-4,-9)
(-5,2)
(-5,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1,2)
(-1$$

2. The table below models the function r(x), which is a transformation of s(x). Sketch the graph of s(x) on the coordinate plane.

		у
r(x) = s(x+2) - 1		10
		8
x' = -7	y' = -6	6
		4
x' = -6	y' = -3	2
x' = -5	y' = -2	\$\$\$\$− 2
x' = -4	y' = -3	
		· · · / / / -B
x' = -3	y' = -6	₩ Y ₩ı&
1.9		

transformation from s(x) to r(x) left 2 down 1 transformation from r(x) to s(x) right 2 up 1

4. The table below models a transformation on f(x). Complete the missing values of each ordered pair. eff + 3, $\partial UV \wedge b$

f(x)		f(x+3)-1		,	
<i>x</i> = 12	<i>y</i> = 145	x' = ^	y' = 144	X = X	NrIMe
<i>x</i> = 5	y = 26	x' = 2	<i>y</i> ′ = 25		princ
x = -4	$y = \gamma $	x' = -7	<i>y'</i> = 16		

4(-2):-2

BEAT THE TEST!

1. Consider the function below.

$$f(x) = -\frac{1}{2}(x+3)^2$$
 $g(x)$ vertex $(-b, 0)$

If g(x) = 4f(x + 3), which of the following statements are true? Select all that apply.

 $G(k) = -2(k+6)^2$

f(x) vertex (-3,0)

- The graphs open in same direction.
- \Box The graph of g(x) is wider than the graph of f(x).
- The graphs share the same vertex.
- f(x) = g(x) when x = -5.
- \Box The graphs share the same y –intercept.

 $-\frac{1}{2}(-5+3)^{2}$ $-2(-5+6)^{2}$ $-\frac{1}{2}(-2)^{2} = -\frac{1}{2}(4)$ $-2(1)^{2}$ -2(1) = -2= -2

 $-2(0+6)^2 = -2(36)$

 $-\frac{1}{2}(0+3)^2 = -\frac{1}{2}(9)$