Section 5 - Topic 13

Classifying Quadratic Functions and Finding Inverses

How can we determine that a function is even?

$$
f(x)=f(-x) \text { symmetcocover y-ax/s }
$$ How can we determine that a function is odd?

2. Quadratic functions are $\begin{aligned} & \text { o always } \\ & \text { o sometimes } \\ & \text { onever }\end{aligned}$ odd.

Try It!
solutions =ccosscy the x-axis
3. Sketch the graphs of three even quadratic functions; one with two solutions, one with one solution, and one with no solutions.

$$
\begin{aligned}
& y=x^{2}-6 \\
& t w o \text { solution } \\
& y=x^{2} \\
& \quad \text { one solvison } \\
& y=x^{2}+6 \\
& n 0 \text { solution }
\end{aligned}
$$

4. Give algebraic representations of three even quadratic functions; one with two solutions, one with one solution, and one with no solutions.

How to determine the inverse of a function:
Step 1: Write function notation $f(x)$ as \qquad .
Step 2: sw it ch the variables y and x.
Step 3: solve the equation for y.
Step 4: Write in function notation $f^{-1}(x)$
There are two ways to determine if two functions are inverses:
Algebraically: Functions $f(x)$ and $g(x)$ are inverses if

Graphically: Functions $f(x)$ and $g(x)$ are inverses if they are reflections over the line \qquad .
Determine if quadratic functions are invertible. Justify your answer.

Let's Practice!
$(-3,2)$
5. Consider the quadratic function $f(x)=(x+3)^{2}+2$.
a. Restrict the domain so that $f(x)$ is invertible.

$$
\begin{aligned}
& f(x)=(x+3)^{2}+2 \quad x \leq-3 \\
& f(x)=(x+3)^{2}+2 \quad x \geq-3
\end{aligned}
$$

$$
\begin{aligned}
& \text { b. Find the inverse for each domain. } \\
& y=(x+3)^{2}+2 \quad x-2=(y+3)^{2} \\
& x=(y+3)^{2}+2 \quad \pm \sqrt{x-2}=y+3 \rightarrow-3 \pm \sqrt{x-2}=y
\end{aligned}
$$

c. Sketch the graph of the quadratic function with the $f^{-1}(x)=-3 \pm \sqrt{x-2}$
restricted domains and its inverse.
"у I!
6. Consider the functions $g(x)=x^{2}-8 x+17$ for $x \geq 4$ and

$$
h(x)=\sqrt{x-1}+4 .
$$

a. Prove that $h(x)$ and $g(x)$ are inverses algebraically.

$$
\begin{aligned}
h(g(x)) & =\sqrt{\left(x^{2}-8 x+17\right)-1}+1 \\
& =\sqrt{x^{2}-8 x+16}+4 \\
& =\sqrt{(x-4)^{2}}+4 \rightarrow x-4+4=x
\end{aligned}
$$

b. Show that $h(x)$ and $g(x)$ are inverses by graphing.

BEAT THE TEST!

1. A quadratic function $f(x)$ is shown.

Select symbols and values to restrict the domain of $f(x)$ so that $f^{-1}(x)$, is a function and the domain of $f(x)$ includes $x=-1$.

section 5 topic 13 classifying quadratic functions and finding inverses 2-24 pfentortedryo25, 2020

