
Section 5: Quadratic Equations and Functions – Part 2 Section 5 - Topic 1 **Graphing Quadratic Functions in Standard Form**

What information can we gather from the graph of the quadratic equation $y = x^2 - 2x$? Label all findings on the graph.

Opening Up or Down?

 $\chi = 1$ Axis of symmetry:

Vertex:

(1,-1) x=0,2 (0,0)(2,0)x-intercept(s):

(0,0)y-intercept:

The standard form of a quadratic function is:

 $y = ax^2 + bx + c$

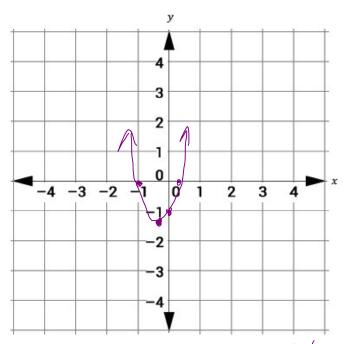
Let's Practice!

1. Consider the following quadratic function.

$$f(x) = 3x^2 + 2x - 1$$

a. Complete the table below for f(x).

d. Complete the lable below for $f(x)$.		
Opening : If $a > 0$, quadratic opens upward. If $a < 0$, quadratic opens downward.	upward	
Axis of Symmetry: $x = \frac{-b}{2a}$	$X = \frac{-2}{2(3)} = \frac{-2}{6} = \frac{-1}{3}$ $X = -\frac{1}{3}$	
Vertex: x —coordinate of vertex is equal to $\frac{-b}{2a}$. Substitute x —coordinate of the vertex into equation to find y —coordinate of the vertex.	$\left(-\frac{1}{3}, \frac{4}{3}\right)$	
-11(+ gbg dratic	-2+4 - 2	


$$3(-\frac{1}{3})^{2} + 2(\frac{1}{3}) - 1$$

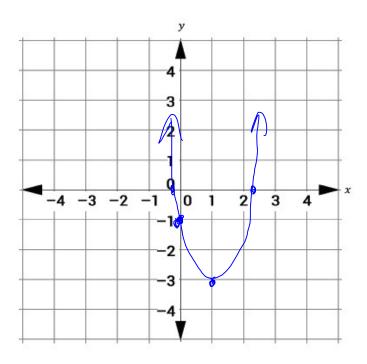
$$3(\frac{1}{3})^{2} + 2(\frac{1}{3})^{2} - 1$$

$$3(\frac{1}{3})^{2} - \frac{2}{3}$$

$$-2 + \sqrt{2} + \sqrt{3} +$$

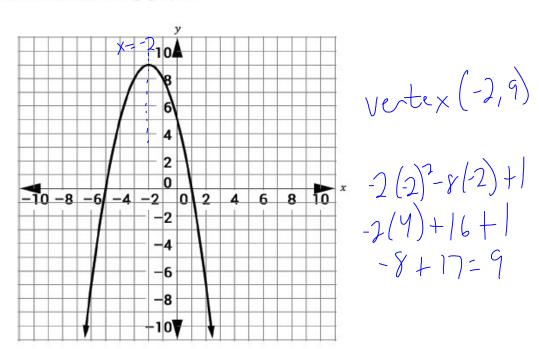
b. Sketch the graph of f(x).

- c. What is the axis of symmetry?
- d. Why do you think the c term is not used in the equation to find the axis of symmetry?


Try It!

a. Complete the table below for g(x).

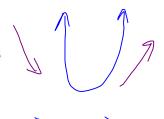
6-	/		
(=	-	
	\neg		

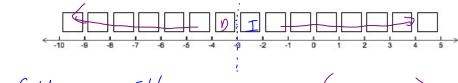

		V
Opening : If $a > 0$, quadratic opens upward. If $a < 0$, quadratic opens downward.	upward	2(1) ² -Y(1)-1
Axis of Symmetry: $x = \frac{-b}{2a}$	$\frac{4}{2(2)} = \frac{4}{1} = 1$ $x = 1$	2-4-1=-3
Vertex : x —coordinate of vertex is equal to $\frac{-b}{2a}$. Substitute x -coordinate of the vertex into equation to find y —coordinate of the vertex.	(1,-3)	$\frac{4 + \int (4)^2 - 4(2)(-1)}{2(2)}$
x-intercepts: Substitute 0 for y and solve for x .	4+49 = 2.2 4-49 =2	$\frac{4 \pm \sqrt{16 + 8}}{4}$ $\frac{4 \pm \sqrt{16 + 8}}{4}$ $\frac{4 \pm \sqrt{24}}{4}$ $\frac{524}{4}$
y-intercept: Substitute 0 for x and solve for y .	(0,-1)	1-024 - 7, 1

b. Sketch the graph of g(x).

BEAT THE TEST!

1. Consider the following graph.




Which function has the same maximum as this graph? $\frac{-b}{2a} = \frac{8}{2(-2)} = \frac{8}{4} = -2$

- $f(x) = -2x^2 8x + 1$
- $g(x) = -x^2 + 9x + 18$
- © $h(x) = x^2 + 4x + 15$ © $m(x) = 3x^2 + 12x + 22$

2. Consider the function $f(x) = 9x^2 + 54x - 66$.

Over which intervals is the graph increasing, decreasing, or neither? Above each interval on the horizontal axis, write "I" to indicate an increasing interval, "D" to indicate a decreasing interval, or "N" to indicate neither.

$$\frac{-54}{2(9)} = \frac{-54}{18} = -3$$