Section 5 - Topic 3

Graphing Quadratic Functions in Vertex Form - Part 1

The vertex form of a quadratic equation is $f(x)=a(x-h)^{2}+k$

Consider the following quadratic function.

$$
f(x)=(x+2)^{2}-4
$$

Complete the table below for $f(x)$.
Opening: If $a>0$, quadratic opens upward. If $a<0$, quadratic opens downward.
(x, y)
Vertex: (h, k)
 x-coordinate of the vertex $\nless<-2$ to find the axis of symmetry.

x-intercepts: Substitute 0 for y and solve for x.
$+2=x+2$
$\begin{array}{cc}2=x+2 & -2=x+2 \\ -2-2 & -2 \\ 0=x & -4=x\end{array}$
\boldsymbol{y}-intercept: Substitute 0 for x and solve for $y . y=(0+2)^{2}$

 $y=0 \quad y(2)^{2}-4=0$

Sketch the graph of $f(x)$.

Try It!

1. Consider the following quadratic function.

$$
f(x)=-(x-1)^{2}+2
$$

a. Complete the table below for $f(x)$.

Opening: If $a>0$, quadratic opens upward. If $a<0$, quadratic opens downward.

Vertex: $(h, k) \quad(1,2)$

$$
\begin{aligned}
& 0=-(x-1)^{2}+2 \\
& -2 \\
& \frac{-2}{-1}=\frac{-(x-1)^{2}}{-1}
\end{aligned}
$$

\boldsymbol{x}-intercepts: Substitute 0 for $\begin{aligned} & y \text { and solve for } x \\ & 2=\sqrt{(x-1)^{2}}+1.4 \\ & 2.4=x-1\end{aligned}$

$$
\pm 1.4=x-1 \quad-1.4=x-1
$$

\boldsymbol{y}-intercept: Substitute 0 for $\boldsymbol{x}-0.4=x$ and solve for y.

b. Sketch the graph of $f(x)$.

section 5 topic 3 graphing quadratic functions in vertex form 1-27 p2.notebookanuary 29, 2020

