Section 5 - Topic 4
Graphing Quadratic Functions in Vertex Form - Part $2\left(\frac{2}{2}\right)$
If an equation is in standard form, we can always complete the square to rewrite it in vertex form.

Consider the function $h(x)=2 x^{2}-8 x+9$. Complete the square to write $h(x)$ in vertex form.

$$
\begin{aligned}
& h(x)=\left(2 x^{2}-8 x\right)+9 \\
& h(x)=2\left(x^{2}-4 x+4\right)+9-8 \\
& h(x)=2(x-2)^{2}+1
\end{aligned}
$$

Vertex form of the quadratic equation:

$$
h(x)=2(x-2)^{2}+1
$$

Opening: If $a>0$, quadratic opens upward. If $a<0$, quadratic opens downward.

Vertex: $(h, k)(2,1)$

Axis of Symmetry: Use the x-coordinate of the vertex to find the axis of symmetry.

$$
x=2
$$

\boldsymbol{x}-intercepts: Substitute 0 for

\boldsymbol{y}-intercepts: Substitute 0 for x and solve for y.

$$
\begin{aligned}
& \text { and solve for } y \text {. } \begin{aligned}
h(x) & =2(0-2)^{2}+1 \\
& =2(-2)^{2}+1 \\
& =2(4)+1 \\
h(x) & =9
\end{aligned}
\end{aligned}
$$

Section 5 topic 4 graphing quadratic functions in vertex form part 21-28-1-29phamalel20pR020

Sketch the graph of $h(x)=2 x^{2}-8 x+9$.

Try It!

1. Consider the following function.
$\left(\frac{4}{2}\right)^{2}=(2)^{2}$
$=4$

$$
f(x)=3 x^{2}+12 x+16
$$

Opening: If $a>0$, quadratic opens upward. If $a<0$, quadratic opens downward.

Vertex: (h, k)

$$
(-2,4)
$$

Axis of Symmetry: Use the x-coordinate of the vertex to find the axis of symmetry.

$$
x=-2
$$

\boldsymbol{x}-intercepts: Substitute 0 for y and solve for x.

Section 5 topic 4 graphing quadratic functions in vertex form part 21-28-1-29phamalel20pR020
\boldsymbol{y}-intercepts: Substitute 0 for x and solve for y.

$$
\begin{aligned}
& 3(0+2)^{2}+4 \\
& 3(2)^{2}+4=3(4)+4=16
\end{aligned}
$$

C. Sketch the graph of $f(x)$.

BEAT THE TEST

1. Consider the functions $f(x)=5 x^{2}-10 x+2$ and $g(x)=-\frac{1}{5}(x-1)^{2}+2.2$.
$(1,2.2) \quad(-1)^{2}$
Which of the following statements are true? Select all that apply.
2. The graphs of $f(x)$ and $g(x)$ share the same axis of symmetry.
(6) The graphs of $f(x)$ and $g(x)$ share the same y-intercept.
\square The graphs of $f(x)$ and $g(x)$ share the same x - intercepts.
\square The graphs of $f(x)$ and $g(x)$ open in the same direction.
\square The graph of $f(x)$ is wider than the graph of $g(x)$.

$$
\begin{aligned}
& -\frac{1}{5}(0-1)^{2}+2.2 \\
& -\frac{1}{5}(-1)^{2}+2.2=-0.2(1)+2.2=2
\end{aligned}
$$

$$
\left(-\frac{2}{2}\right)^{2}
$$

$$
5 x-10 x+2
$$

$$
\left(5 x^{2}-10 x+2\right)+2
$$

$$
5\left(x^{2}-2 x+1\right)+2-5
$$

$$
15(x-1)^{2}-3 \quad 0=5(x-1)^{2}-3
$$

$$
(1,-3) \quad \frac{3}{5}=\frac{x(x-1)^{2}}{6}
$$

$$
\begin{aligned}
& 0=-\frac{1}{5}(x-1)^{2}+2.2 \\
& -2.2=-\frac{1}{5}(x-1)^{2}-5 \\
& 11=(x-1)^{2}
\end{aligned}
$$

