Section 5 - Topic 7

Writing Quadratic Equations when Given a Focus and

 DirectrixThe following parabola represents a quadratic function.

Notice how the focus and directrix are labeled in the graph.
$>$ A parabola is a set of points called a lous of points.
\Rightarrow The focus of a parabola is a fixed point on the interior of a parabola used in the formal definition of the curve.
> The dire $t_{r} \mid x$ of a parabola is a line perpendicular to the axis of symmetry used in the definition of a parabola.

Consider the point $(2,1)$ on the parabola.
What is the distance from this point to the focus?

What is the distance from this point to the directrix?

$$
2 \text { Units }
$$

Now consider the point $(4,4)$ on the same parabola.
What is the distance from this point to the focus? Hint: Use the fucus $(0,1)$
distance formula. $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
$\sqrt{(4-6)^{2}+(4-1)^{2}}$
$\sqrt{(4)^{2}+(3)^{2}}=\sqrt{16+9}=\sqrt{25}=5$

What is the distance from this point to the directrix?

What do you notice about the distances?
They are equal!

The graph below shows a focus and directrix for a specific parabola.

What formula from geometry can help us find the vertex of the parabola?
M. point formula

What is the vertex of the parabola? $\frac{6+6}{2}=6 \quad \frac{4+(-2)}{2}=\frac{2}{2}=1$

What other information would be needed to write the equation for the parabola? any point (x, y) or a

Let's Practice!

1. Consider the following parabola with the focus at $(-1,-3)$ and the directrix line at $y=4$.

a. Use the distance formula to describe the distance from (x, y) to the focus.

$$
\sqrt{(x+1)^{2}+(y+3)^{2}}
$$

b. Use the distance formula to describe the distance from (x, y) to the directrix.

$\sqrt{(y-4)^{2}}$
c. What do you know about these two distances?
They are equal
d. Use this information to write the equation for the quadratic.

$(x+1)^{2}+(y+3)^{2}=(y-y)^{2}$

$$
\begin{aligned}
x^{2}+2 x & +10+6 x=-8 y+16 \\
-16-6 y & -6 y-16 \\
x^{2}+2 x-6 & =\frac{-x 4 y}{-1 x}
\end{aligned}
$$

$x^{2}+2 x+1+y^{2}+6 y+9=y^{2}-8 y+16$
Try It!

$$
y=7
$$

What is the equation for the parabola?

$$
-\frac{1}{14} x^{2}-\frac{1}{7} x+\frac{3}{7}=y
$$

$$
\begin{gathered}
\sqrt{(x-0)^{2}+(y-0)^{2}}=\sqrt{(y-7)^{2}} \\
x^{2}+y^{2}=x^{2}-14 y+49 \\
x^{2}=-14 y+49 \\
-49
\end{gathered}
$$

$$
\begin{aligned}
& \frac{x^{2}}{-14}-\frac{49}{-14}=\frac{-14}{-14} \\
& -\frac{1}{14} x^{2}+\frac{7}{2}=y
\end{aligned}
$$

BEAT THE TEST!

1. In the diagram below, F is the focus of the parabola, line d is the directrix, and $\overline{A B} \perp d$.

What is the relationship between $F A$ and $A B$?
(A) $F A<A B$
(8) $F A=A B$
(c) $F A>A B$
(D) A relationship cannot be determined.
2. A parabola has a focus of $(2,5)$ and the directrix is $y=3$. What is the equation for the parabola in standard form? (x, y)

$$
\begin{aligned}
& \sqrt{(x-2)^{2}+(y-5)^{2}}=\sqrt{(y-3)^{2}} \\
& x^{2}-4 x+4+y^{2}-10 y+25=y^{2}-6 y+9 \\
& x^{2}-4 x+29-x y=-6 y+9 \\
& -9+14 y+10 y-y \\
& \frac{x^{2}}{4}-\frac{4 x}{4}+\frac{20}{4}=\frac{4 y}{4} \quad \frac{1}{4} x^{2}-x+5=y
\end{aligned}
$$

Section 5 Topic 7 Writing Quadratic Equations when given a focus and directifer

