Section 5 - Topic 8

Systems of Equations with Quadratic Equations - Part 1

NASA launched a model rocket from the grounds of Cape Canaveral. The height, in feet, of the rocket with respect to time can be modeled by the function $h(x)=-x^{2}+10 x$, where x is time, in seconds. At the same time, a Navy fleet shot a laser beam from a deck 14 feet above sea level. The laser beam follows a straight path represented by the equation $g(x)=-x+14$.

$$
\begin{aligned}
& \frac{-b}{2 a}=\frac{-10}{21-1)}=5 \\
& \left.-(5)^{2}+10()^{-}\right)=25
\end{aligned}
$$

Model the situation on the graph below.

Mark on the graph the points where $f(x)=g(x)$.

What do these points represent? The points where the
laser beam intersects
the model socket

The rocket and the laser beam model a quadratic-linear system of equations. We can also solve this system algebraically.

The following functions model the system.

$$
\begin{gathered}
f(x)=-x^{2}+10 x \\
g(x)=-x+14
\end{gathered}
$$

One equation is a quadratic and has a degree of 2 . The other equation is a linear and has a degree of \qquad Where is $f(x)=g(x)$? Justify your answer algebraically.

$$
\begin{aligned}
& -x^{2}+10 x=-x+14 \\
& +x-14+x-14 \\
& -x^{2}+11 x-14=0
\end{aligned}
$$.

$$
\frac{-11 \pm \sqrt{(11)^{2}-4(-1)(-14)}}{21-1)}
$$

$$
\frac{-11 \pm \sqrt{121-56}}{-2}
$$

Does your algebraic answer support with your graphic solution?
Yes
\square

$$
-11 \pm \sqrt{65}
$$

$$
\begin{array}{cc}
\frac{-2}{-11 \pm 8.1} & \frac{-11+8.1}{-2} \\
\frac{-2.9}{-2}=1.45
\end{array}
$$

$$
\frac{-11-8_{1} 1}{-2}=\frac{-19.1}{2}
$$

$$
9.55
$$

Let's Practice!

1. Consider the following system.

$$
\frac{7}{\partial(1)}=\frac{7}{2}=3,5
$$

$$
\begin{array}{ll}
f(x)=3 \\
g(x)=x^{2}-7 x+11
\end{array} \quad(3.5)^{2}-7(3.5)+110
$$

Where is $f(x)=g(x)$? Justify your answer algebraically.

$$
\begin{array}{lc}
x^{2}-7 x+11=3 \\
x^{2}-7 x+8=0 & \text { Graph the system. } \\
\frac{7 \pm \sqrt{(-7)^{2}-4(1)(8)}}{2(1)} & f(x) \\
\frac{7 \pm \sqrt{49-32}}{2}=\frac{7 \pm \sqrt{17}}{2} & \left.\frac{7+4.1}{2}=5.6 \right\rvert\,
\end{array}
$$

Try It!

$$
f(x)=\frac{2}{2(1)}=1 \quad(1)^{2}-2-5=-6
$$

2. Consider the following system.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left.f(x)=\frac{-5}{2(.2)}=\frac{-5}{-4}=1.25-2\left(1.25^{-}\right)^{2}+5(1.2)^{-}\right)+1 \\
g(x)=-2 x^{2}+5 x+1
\end{array}\right.
\end{aligned}
$$

Where is $f(x)=g(x)$? Justify your answer algebraically. $(3)^{2}-2(3)-5=-2$
Graph the system.

$$
\begin{aligned}
& x^{2}-2 x-5=-2 x^{2}+5 x+1 \\
& +2 x-5 x-1 \\
& \left(-\frac{2}{3}\right)^{2}-2\left(\frac{-2}{3}\right)-5 \quad \frac{4}{9}+\frac{4}{y 3}-5=\frac{4}{9}+\frac{12}{9}-\frac{45}{9} \\
& 3 x^{2}-7 x-6=0 \\
& \frac{7 \pm \sqrt{(7)^{2}-4(3)(-6)}}{2(3)} \\
& \frac{7 \pm \sqrt{49+72}}{6}=\frac{7 \pm \sqrt{121}}{6} \\
& \frac{7+11}{6}=3 \\
& \frac{7-11}{6}=\frac{-2}{3}
\end{aligned}
$$

