Bell Work
Add or Subtract.

Find the least common multiple (LCM) of each pair of polynomials.

$$
\text { 1) } 9 \overline{(x+2)(2 x-1)} \text { and } \overline{3(x+2)}
$$

$$
\text { LCM: } 9(x+2)(2 x-1)
$$

$$
\begin{array}{ll}
\text { 2) } \begin{aligned}
x^{2}-9 x-10 & \text { and }
\end{aligned} 2 x+10 \\
\begin{array}{ll}
(x-10)(x+1) & 2(x+5) \\
\text { LCM: } & 2(x+5)(x-10)(x+1)
\end{array}
\end{array}
$$

Find the sum or difference. State any restrictions on the variables. II Name Restrictions

$$
\begin{aligned}
& \text { restrictions on the variables. 1. Name Restrictions } \\
& \text { 3) } \frac{1}{2 x}+\frac{1}{2 x}=\frac{2}{2 x}=\frac{1}{x} \quad \begin{array}{l}
\text { 2. Get Comma- Denominator } \\
\text { 3. Aud or Subtract }
\end{array}
\end{aligned}
$$

$$
\text { 4) } \frac{\partial-3}{2 d+1}+\frac{d-1}{\partial d+1}=\frac{2 d-4}{2 d+1=0} \quad d f-\frac{1}{2}
$$

5) $\frac{-5 y}{2 y-1}-\frac{y-3}{2 y-1}$

$$
\begin{aligned}
& \text { 6) } \frac{5 x}{x^{2}-9}+\frac{2(x+4)}{x+4}=\frac{5 x}{(x+3)(x-3)}+\frac{2}{x+4}\left(x^{2}-9\right) \\
& \frac{5 x^{2}+20 x}{(x+4)(x+3)(x-3)}+\frac{2 x^{2}-18}{(x+4)(x+3)(x-3)} \\
& \text { 7) } \frac{5 x}{x^{2}-x-6}+\frac{4 x^{2}+20 x-18}{x^{2}+4 x+4} \\
& \frac{5 x(x+2)}{(x-3)(x+2)}+\frac{4(x-3)(x-3)}{(x+2)(x+2)} \\
& \frac{5 x^{2}+10 x}{(x-3)(x+2)(x+2)}+\frac{4 x-12}{(x-3)(x+2)(x+2)}=\frac{5 x^{2}+14 x-12}{(x-3)(x+2)(x+2)} \\
& x+3,-2
\end{aligned}
$$

