Bell Work:

$$
\begin{aligned}
& \text { Simplify } \\
& \text { 1) } x^{4} \cdot x^{3} \quad x^{4+3}=x^{7} \\
& \text { 2) } 5 x^{2} \cdot 3 x^{7} \quad 5(3)\left(x^{2+7}\right)=15 x^{9}
\end{aligned}
$$

$$
\text { 3) } \begin{array}{rl}
3 x^{2} y^{3} \cdot 9 x^{-4} y^{3} & 3(9)\left(x^{2+(-4)}\right)\left(y^{3+3}\right) \\
\frac{27}{1} \frac{x^{-2} y^{6}}{1}=\frac{27 y^{6}}{x^{2}}
\end{array}
$$

$$
\begin{aligned}
& \text { Dividing Exponents } \\
& \text { - divide integers (if possible) } \\
& \text { - subtract exponents (if bases are the same) } \\
& \begin{array}{lll}
\text { 1) } \frac{4^{5}}{4^{3}} & 2) \frac{b^{5}}{b^{8}} & \text { 3) } \frac{4 x^{10}}{9 x^{10}} \\
4^{5-3} & b^{5-8}=\frac{b^{-3}}{1} & \frac{4}{9} x^{10-10} \\
y^{2}=16 & \frac{4}{9} x^{8}=\frac{4}{9}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\frac{4}{20}=\frac{2}{10} & =\frac{1}{5} \\
x^{10-8} & =x^{2} \\
\frac{1 x^{2}}{5} & =\frac{x^{2}}{5}
\end{aligned}
$$

$\frac{3}{21}=\frac{1}{7}$

$5 x^{4}$

