Bell Work:

$$
\begin{aligned}
& 15+5 \sqrt{3}+12 \sqrt{3}+4(3) \\
& 15+17 \sqrt{3}+12 \\
& 27+17 \sqrt{3}
\end{aligned}
$$

Divide cannot have a radical in the

$$
\begin{aligned}
& \text { 1) } \frac{\sqrt{15}}{5 \sqrt{20}} \cdot \sqrt{20} \\
& \frac{\sqrt{300}}{5(20)} \\
& \frac{\sqrt{100} \cdot \sqrt{3}}{100}=\frac{10 \sqrt{3}}{100} \div 10 \\
& \frac{\sqrt{3}}{10}
\end{aligned}
$$

2) $\frac{\sqrt{3 x^{2} y^{3}}}{4 \sqrt{5 x y^{3}}} \cdot \sqrt{5 x y^{3}}$ denominator

$$
\begin{aligned}
& \text { 3) } \frac{(3-3 \sqrt{3 a})}{4 \sqrt{8 a} \cdot \sqrt{8 a}} \\
& 3 \sqrt{8 a}-3 \sqrt{24 a^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{6 \sqrt{2 a}-6 a \sqrt{6}}{32 a} \div 2 \\
& 3 \sqrt{2 a}-3 a \sqrt{6} \\
& \text { at } 0 \\
& \text { (4) } \\
& \frac{4 x^{3}-3 \sqrt{3 x}}{3 \sqrt{3 x^{2}}} \cdot \sqrt{3 x^{2}} \cdot \sqrt{3 x^{2}} \\
& \frac{4 x^{3} \sqrt{3 x^{2}}-3 \sqrt{9 x^{3}}}{3\left(3 x^{2}\right)} \\
& \frac{4 x^{3} \sqrt{3} \sqrt{x^{2}}-3 \sqrt{9} \sqrt{x^{2}} \sqrt{x}}{9 x^{2}} \\
& \frac{4 x^{3}(x) \sqrt{3}-3(3)(x) \sqrt{x}}{9 x^{2}} \\
& \frac{4 x^{4} \sqrt{3}-9 x \sqrt{x}}{9 x^{2}}: x \sqrt{\frac{4 x^{3} \sqrt{3}-9 \sqrt{x}}{9 x}} \begin{array}{l}
x \neq 0
\end{array}
\end{aligned}
$$

