Bell Work:

Rewrite each radical as an exponential function

Exploring Exponential Functions

Graph each function.

b^{x}
$\sin (.3)^{\prime}=.3$

$$
\begin{aligned}
& (.3)^{2}=09 \\
& .3^{-1}=\frac{1}{13}=3.33 \\
& 3^{2}=\frac{1}{13^{2}}=\frac{1}{.09}=11.1
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2) } y=2\left(\frac{1}{5}\right)^{x} \\
& \begin{array}{c|c|c|c|c|c|}
x & -2 & -1 & 0 & 1 & 2 \\
\hline y & 50 & 10 & 2 & \frac{2}{5} & \frac{2}{25}
\end{array} \\
& 2\left(\frac{1}{5}\right)^{\prime}=2\left(\frac{1}{5}\right)=\frac{2}{5} \\
& 2\left(\frac{1}{5}\right)^{2}=2\left(\frac{1}{25}\right)=\frac{2}{25} \\
& 2\left(\frac{1}{5}\right)^{-1}=2\left(\frac{5}{1}\right)=10 \\
& 2\left(\frac{1}{5}\right)^{-2}=2(5)^{2}=50
\end{aligned}
$$

$$
y=a(b)^{x}
$$

Without graphing, determine whether the function represents exponential growth $-b>1$ or exponential decay. Then find the y-intercept.

$$
i_{0}<b<1
$$

4) $y=0.99\left(\frac{1}{3}\right)^{x}$

$$
y-i n t=0.99
$$

$$
\text { 5) } \begin{gathered}
y=185\left(\frac{5}{4}\right)^{x} \\
b=\frac{5}{4} \\
g \text { growth } \\
y \text {-int }=185
\end{gathered}
$$

1)

Suppose you deposit $\$ 1500$ in a savings account that pays interest at an annual rate of 6%. No money is added or withdrawn from the account.
$r=6 \%=.06+1=1.06$
a) How much will be in the account after 5 years?

$$
\begin{aligned}
y & =1500(1.66)^{5} \\
& =2007.34
\end{aligned}
$$

$$
\text { Quarterly } l_{n=4}
$$

$$
\begin{aligned}
& y= a\left(1+\frac{r}{n}\right)^{n t} \\
& 1500\left(1+\frac{-0 l}{4}\right)^{4.5}
\end{aligned}
$$

b) How many years will it take for the account to contain $\$ 2500$?

$$
1500(1+.015)^{20}
$$

$$
2500=1500(1.06)^{t}
$$

$$
1500(1,015)^{20}=
$$

$$
1.67=1.06^{t}
$$

$$
2020.28
$$

$$
\log _{1.06} 1.67=t=\frac{\log 1.67}{\log 1.06} \approx 8.8 \mathrm{yrs}
$$

Write an exponential function to model each situation. Find each amount after the specified time.

8 A population of $1,236,000$ grows 1.3% per year for 10 years. $13+1=1,013$

$$
\begin{aligned}
& y=a(1+r)^{t} \\
& y=1,236,000(1.013)^{10} \\
& y=1,406,414
\end{aligned}
$$

9) A new car that sells for $\$ 18,000$ depreciates 25% each year for 4 years.

$$
\begin{aligned}
& y=18,000(.75)^{4} \\
& y=5695.32
\end{aligned}
$$

$$
\begin{aligned}
& 55 \%=.55 \\
& \text { For each annual rate of change, find the corresponding growth or decay factor. } \\
& \text { 13) }+0.1 \% \\
& \text { (14) }-0.1 \% \\
& \begin{array}{l}
.999 \\
\text { decay }
\end{array} \\
& \text { 15) }-75 \% \\
& 1.001 \\
& \text { Gecuth } \\
& \text { growth } \\
& \text { decay } \\
& 76 \%=.7+1=1.7
\end{aligned}
$$

(6). In 2009 , there were 1570 bears in a wildlife refuge. In 2010 , the population had increased to approximately 1884 bears. If this trend continues and the bear population is increasing exponentially, how many bears will there be in 2015?

$$
t=5
$$

$$
\frac{1884-1570}{1570}=.2+1=1.2=\begin{aligned}
& \text { Growth } \\
& \text { factor }
\end{aligned}
$$

$$
\begin{aligned}
& 1884(1.2)^{5}= \\
& 4687.99 \\
&= 4688 \\
& \begin{array}{l}
\text { bears } \\
\\
\end{array} \begin{aligned}
\text { in } 2015
\end{aligned}
\end{aligned}
$$

Your friend drops a rubber ball from 4 ft . You notice that its rebound is 32.5
in . on the first bounce and 22 in . on the second bounce.
a. What exponential function would be a good model for the height of the ball?
b. How high will the ball bounce on the fourth bounce?

$$
\begin{aligned}
& \frac{48-30.5}{48}=.3229 \quad 1-.3229=.6771 \\
& \begin{array}{ll}
\frac{15.5}{48} & \text { a) } 48(.6771)^{n} \\
& \text { b) } 48(.6771)^{4} \\
& =10.09 \mathrm{in}
\end{array}
\end{aligned}
$$

$18)$ A new truck that sells for $\$ 29,000$ depreciates 12% each year. What is the value of the truck after 7 years?

$$
\begin{array}{r}
29,000(.88)^{7} \\
\$ 11,851.59
\end{array}
$$

19) The population of an endangered bird is decreasing at a rate of 0.75% per year. There are currently about 200,000 of these birds. $\quad 1-10075=9925$
a. What exponential function would be a good model for the population of these endangered birds?
b. How many birds will there be in 100 years?

a)

$$
200,000(9925)
$$

$=94,207 \mathrm{birds}$

