$$
\begin{aligned}
& \text { Bell work } 2 \cdot 19 \\
& \text { Evaluate each binomial } \\
& \begin{array}{lll}
\text { 1) } \log _{12} 144 & \text { (2) } \log _{4} 64 & \text { (3) } \log _{64} 4 \\
\frac{\log _{9} 144}{\log _{12} 12} & \frac{\log _{6} 64}{\log _{3} 4} & \frac{\log _{4} 4}{\log _{64} 4} \\
2 & 3 & 0.3333 \text { or } \frac{1}{3}
\end{array}
\end{aligned}
$$

Solve each equation.

$$
\begin{array}{lll}
1) 8^{2 x}=32 & 2 \lg _{2 x}=27 & 3) 36^{-2 x+1}=216 \\
\log 8^{2 x}=\log 32 & \log 9^{2 x}=\log 27 & -2 x+1 \log 36=\log 216 \\
2 x \log 8=\log 32 & 2 x \log 9=\log 27 & -2 x+1=\frac{\log 216}{\log 36} \\
2 x=\frac{\log 32}{\log 8} & 2 x=\frac{\log 27}{\log 9} & -2 x+1=1.5 \\
2 x=1.6667 & x=1.5 & -2 x=0.5 \\
x=0.75 & x=-0.25 \\
x=0.833 & &
\end{array}
$$

Solve each equation. Round answers to the nearest hundredth.
4) $5^{2 x}=20$
5) $4^{n-2}=3$

$x=0.93$

$$
\begin{gathered}
6) 15^{2 n-3}=245 \\
2 n-3 \log 15=\log 245 \\
2 n-3=\frac{6 g 245}{\log 15} \\
2 n-3=2.0314 \\
n=2.52
\end{gathered}
$$

Solve each equation. Check your answers.

$$
\begin{array}{ccc}
10)_{2} \log x=2 & 11) \log (3 x-2)=3 & (2) 2 \log (2 x+5)=4 \\
\log x=1 & 3 x-2=10^{3} & \log (2 x+5)=2 \\
x=101 & 3 x-2=1000 & 2 x+5=10^{2} \\
x=10 & 3 x=1002 & 2 x+5=100 \\
& x=334 & 2 x=95 \\
& x=47.5
\end{array}
$$

13) Suppose you deposit $\$ 2500$ in a savings account that pays you 5% interest per year.
a. How many years will it take for you to double your money?
b. How many years will it take for your account to reach $\$ 8,000$?

$$
\begin{aligned}
& A=P\left(1+\frac{r}{n}\right)^{n t} \quad P=\text { Principle } \\
& 1+\frac{105}{5}+5000=A \text {. Amount } \\
& \begin{array}{rlrl}
1+\frac{105}{1} \\
5000=2500(1.05)^{t} 5000 & = & r & =\text { rate }=1.05 \\
1 & =n & =\text { number of time }
\end{array} \\
& \begin{aligned}
& 1=n=\text { number of times } \\
& t=\text { interests compounded } \\
& \text { time }
\end{aligned} \\
& \left.\log _{1.05} 2=t \quad b\right) 8000=2500(1.05)^{t} \\
& \frac{\log 2}{\log 1.85}=t \\
& 2=1.05^{t} \\
& \begin{array}{l}
t=\text { interest is } \\
\text { b) } 8000=2500(1 \\
3.2=1.05 t
\end{array} \\
& \frac{\log 3.2}{\log 1.05}=23.8 \mathrm{y} / \mathrm{s}
\end{aligned}
$$

