Bell Work: 3-1

N-RN.2.3

The rectangle shown below has a length of 6 feet.

6 feet

The value of the area of the rectangle, in square feet, is an irrational number. Therefore, the number that represents the width of the rectangle must be

- A. A whole number
- B. A rational number
- C. An irrational number
- D. A non-real complex number.

Factoring when
$$a > 1$$

1) $5 \times 2 - 18 \times + 9$
 $a = 5 \times 9 \times 5$
 $5(9) \times 13 = -18 \times 9 \times 5$
 $3(15) \times 3 - 15 \times 5 \times 5$
 $(x - \frac{3}{5}) \times -\frac{15}{5}$
 $(5 \times -3) \times (x - 3)$

2)
$$\frac{1}{4}n^{2} - 15n - 25$$

$$\frac{-100}{9(25)} = \frac{1}{13} = \frac{15}{15} = \frac{100}{100}$$

$$\frac{1}{1000} = \frac{15}{1000} = \frac{15}{1000} = \frac{100}{1000}$$

$$\frac{1}{1000} = \frac{15}{1000} = \frac{15}{1000} = \frac{100}{1000} = \frac$$

3)
$$|5n^{2}-27n-6|-(c+=3)$$
 -90
 $|7=|6|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$
 $|3(-6)=-90|$

4)
$$-\frac{1}{6a^2} - \frac{25a - 25}{-1}$$

Be negative

 $-1(6a^2 + 25a + 25)$
 $-1(6a^2 + 25a + 25)$