Bell Work: 3-1

N-RN.2.3

The rectangle shown below has a length of 6 feet.

The value of the area of the rectangle, in square feet, is an irrational number.
Therefore, the number that represents the width of the rectangle must be
A. A whole number
B. A rational number
C. An irrational number
D. A non-real complex number.

$$
\text { Factoring when } a>1
$$

$$
\begin{aligned}
& \text { 2) } 4 n^{2}-15 n-25 \\
& \begin{array}{cc|c}
-100 & -15 \\
4(250) & \\
1020 \\
108) & \\
5(00) & \frac{5}{4}-\frac{20}{4}
\end{array} \\
& A=4 \\
& \begin{array}{l}
13=-(15) \\
C=-25
\end{array}>4(-25)=-100 \\
& \left(A+\frac{5}{4}\right)(n-5) \\
& (4 n+5)(n-5)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3) } 15 n^{2}-27 n-6-G C F=3 \\
& -90 \left\lvert\, \begin{array}{l}
A=15 \\
13=-27 \\
C=-6
\end{array}>15(-6)=-90\right. \\
& 3\left(5 n^{2}-9 n-2\right) \\
& \left.\begin{array}{cc}
-10 \mid-9 & A=5 \\
\left.1(10) \left\lvert\, \frac{1}{5}-\frac{10}{5} \quad \begin{array}{l}
B \\
C
\end{array}\right.\right)-2
\end{array}\right) 5(-2)=-10 \\
& 3\left(n+\frac{1}{5}\right)(n-2) \\
& 3(5 n+1)(n-2)
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4) } \frac{-6 a^{2}}{-1} \frac{-25 a}{-1}-\frac{25}{-1} \\
& \text { A cannot be negative } \\
& \text { GCF=-1 } \\
& -1\left(6 a^{2}+25 a+25\right) \\
& \begin{array}{|l|l}
150 & 25 \\
\hline 6(125) \\
5(30) \\
10(15) & \left\lvert\, \frac{10}{6}+\frac{15}{6}\right.
\end{array} \\
& \begin{array}{l}
A=6 \\
B=25 \\
C=25
\end{array}>6(25)=150 \\
& -1\left(a+\frac{10}{6}\right)\left(a+\frac{15}{6}\right) \\
& -1\left(a+\frac{5}{3}\right)\left(a+\frac{5}{9}\right) \rightarrow-1(3 a+5)(2 a+5)
\end{aligned}
$$

