$$(2) - 8y^{3}(7y^{2} - 4y - 1)$$

$$-8(7)(y^{3+2}) = -56y^{5}$$

$$-8(-4) + 31 = 32y^{4}$$

$$-8(-1) + 31 = 8y^{3}$$

$$-6y^{5} + 31y^{4} + 8y^{3}$$

Factoring - Finding the GCF

- # | Question = What does each term have

In common

- What # can each term be

divided by

- what is the smallest exponent?

Find the GCF. = Grentert & ommon Factor

1) $5x^3 + 25x^2 + 45x$ Divided by 5 CF = 5x CF = 5x CF = 5x CF = 5x CF = 5x

2)
$$3x^{4} - 9x^{2} - 12x$$

G $CF = 3x$

3)
$$456+27$$
 $45=3,5,9,45$ $37=1,3,9,27$

(1)
$$a^{3} + 6a^{2} - 11a$$

GCF = 1a or a

G C
$$F = 4$$

1)
$$\frac{5x^{3} + 25x^{2} + 45x}{5x}$$

$$5 \times (1 \times^2 + 5 \times + 9)$$

2)
$$\frac{3}{3} \times \frac{9}{3} \times \frac{9}{3} \times \frac{2}{3} \times \frac{12}{3} \times$$

1)
$$\frac{5x^3 + 25x^2 + 45x}{5x}$$
 GCF= $5x$
 $\frac{5}{5x}$ $5x$
 $\frac{5}{5x}$
 $\frac{5}{5x}$

COP= $5x$

COP=

3)
$$\frac{45b}{9} + \frac{27}{9}$$
 GCF = 9
9(5b+3)

9)
$$\frac{a^{3} + 6a^{2} - 1/a}{a}$$
 $G(F = \alpha)$
 $a(a^{2} + 6a - 1/1)$
5) $\frac{4x^{3} + 1/2x - 28}{4}$ $G(F = 4)$
 $4(x^{3} + 3x - 7)$

1)
$$\frac{16g}{16} + \frac{32}{16}$$
 GCF= 16
16 $(9+2)$
7) $\frac{\chi_{9}^{4} + 21g^{3} - 14g^{2}}{\chi_{9}^{2}}$ GCF= 7_{9}^{2}
 $7_{9}^{2}(g^{2}+3g-2)$