Remember that in a function, every input value corresponds to exactly one output value.

Consider the table below that represents the conversion of temperatures from degrees Fahrenheit to degrees Celsius.

Degrees Fahrenheit (Input)	-49	-22	14	122	167	212
Degrees Celsius (Output)	-45	-30	-10	50	75	100

This table defines a function since every input value corresponds to exactly one output value.

This table defines a function since every input value corresponds to exactly one output value.

Notice that every output value corresponds to exactly one input value.

This is a special kind of function we call a(n) $\underline{C} \cap \ell$ $\underline{C} \cap \ell$ function.

Are the following functions one-to-one?

$$f$$
:{(-1,6),(0,5),(3,2),(7,10)}

$$g: \{(-5,4), (2,6), (3,5), (10,4)\}$$

Are the following functions one-to-one?

We can use the vertical line test to determine if a graph represents a function. What type of line test could we use to determine if the function is one-to-one?

For every one-to-one function, we can find its *inverse* function. The output of the original function becomes the input of the inverse function.

The symbol f^{-1} is used to denote the inverse of the function _____.

We can find the inverse of a one-to-one function by switching the coordinates of the ordered pairs of the function.

Find the inverse of the following one-to-one function.

$$f:\{(-1,3),(0,4),(2,-6),(3,6),(7,-8)\}\$$

$$f^{-1}: \{(3,-1)(4,0)(-6,2)(6,3)(-6,7)\}$$

When given a function f(x), we can find the inverse, $f^{-1}(x)$, by interchanging x and y and solving for y.

Find the inverse of f(x) = 5x + 2.

$$y = 5x + 2$$

 $x = 5y + 2$
 $x = 2$
 $x = 3$
 $x = 3$

Graph the function and its inverse.

$$f(x)=5x+2$$

 $f'(x)=\frac{x}{5}-\frac{2}{5}$

Consider the following graphs of f(x) and $f^{-1}(x)$.

What do you notice about the graphs of f(x) and $f^{-1}(x)$?

-both graphs go from neg to pos -They are inverses and one-to-one functions. Consider the following graph of f(x). Graph $f^{-1}(x)$.

Try It!

 Determine whether each function is a one-to-one function. If it is one-to-one, write the inverse function.

a.
$$h: \{(11,13), (4,3), (3,4), (8,8)\}$$
 $\forall e \in S$ $\forall e$

b.
$$s: \{(2,5), (3,-1), (7,5), (6,2)\}$$

- Find the inverse of the following functions. 2.
 - $G. \quad f(x) = \frac{x-4}{7}$

b. $g(x) = \sqrt[3]{x+1}$

3. Graph the inverse of each function on the same coordinate plane.

a.

October 15, 2019