Remember that in a function, every input value corresponds to exactly one output value.

Consider the table below that represents the conversion of temperatures from degrees Fahrenheit to degrees Celsius.

Degrees Fahrenheit (Input)	-49	-22	14	122	167	212
Degrees Celsius (Output)	-45	-30	-10	50	75	100

This table defines a function since every input value corresponds to exactly one output value.

This table defines a function since every input value corresponds to exactly one output value.

Notice that every output value corresponds to exactly one input value.
This is a special kind of function we call $a(n)$ ane to one function.

Are the following functions one-to-one?

$$
f:\{(-1,6),(0,5),(3,2),(7,10)\} \quad Y_{e} S
$$

$$
g:\{(-5,4),(2,6),(3,5),(10,4)\} \quad \mathrm{No}
$$

Are the following functions one-to-one?

We can use the vertical line test to determine if a graph represents a function. What type of line test could we use to determine if the function is one-to-one?
horizontal

For every one-to-one function, we can find its inverse function. The output of the original function becomes the input of the inverse function.

The symbol f^{-1} is used to denote the inverse of the function
\qquad .

We can find the inverse of a one-to-one function by switching the coordinates of the ordered pairs of the function.

Find the inverse of the following one-to-one function.
$f:\{(-1,3),(0,4),(2,-6),(3,6),(7,-8)\}$

$$
t^{-1}:\{(3,-1)(4,0)(-6,2)(6,3)(-8,7)\}
$$

When given a function $f(x)$, we can find the inverse, $f^{-1}(x)$, by interchanging x and y and solving for y.

Find the inverse of $f(x)=5 x+2$.

$$
\begin{aligned}
& y=5 x+2 \\
& x=5 y \neq 2 \\
& -2 \\
& \frac{x-2}{5}=\frac{5}{5} \\
& \frac{x}{5}-\frac{2}{5}=y+f^{-1}(x)=\frac{x}{5}-\frac{2}{5}
\end{aligned}
$$

Graph the function and its inverse.

$$
\begin{aligned}
& f(x)=5 x+2 \\
& f(x)=\frac{2}{5}-\frac{5}{5}
\end{aligned}
$$

Consider the following graphs of $f(x)$ and $f^{-1}(x)$.

What do you notice about the graphs of $f(x)$ and $f^{-1}(x)$?
-both graphs go from neg to pos

- They are inverses and one-to-one functions.

Consider the following graph of $f(x)$. Graph $f^{-1}(x)$.

Try It!

1. Determine whether each function is a one-to-one function. If it is one-to-one, write the inverse function.
a. $h:\{(11,13),(4,3),(3,4),(8,8)\}$

$$
h^{-1}\{(13,11)(3,4)(4,3)(8,8)\}
$$

b. $s:\{(2,5),(3,-1),(7,5),(6,2)\}$
No
2. Find the inverse of the following functions.
a. $\quad f(x)=\frac{x-4}{7}$

$$
\begin{aligned}
& y(x)=\frac{x}{7} \\
& y=14 \\
& 7(7) x=\frac{y-4}{7}(7) \rightarrow
\end{aligned} \begin{aligned}
& x=y-4 \\
& +4+4 \\
& 7 x+4=y \quad f^{-1}(x)=7 x+4
\end{aligned}
$$

b. $g(x)=\sqrt[3]{x+1}$

$$
\begin{aligned}
& y=\sqrt[3]{x+1} \\
& x=\sqrt[3]{y+1} \\
& x^{3}=\sqrt[3]{y+1} \\
& x^{3}=y+1 \\
& -1 \\
& -1
\end{aligned}
$$

$$
x^{3}-1=y
$$

$$
g^{-1}(x)=x^{3}-1
$$

3. Graph the inverse of each function on the same coordinate plane.
a.

b.

