Inverse functions concluded

For every function $f(x)$, if the inverse of $f(x)$ is also a function, then the function $f(x)$ is an Invertable function.

Determine if $f(x)=x^{2}$ is an invertible function. If not, restrict the domain so that $f(x)$ is an invertible function.

We can also determine if functions are inverses of each other.
Consider the function $f(x)=3 x+2$.

Find $f^{-1}(x)$.

$$
\frac{x}{3}-\frac{2}{3}=y
$$

$$
f^{-1}(x)=\frac{x}{3}-\frac{2}{3}
$$

Evaluate $f\left(f^{-1}(0)\right)$.

$$
\begin{aligned}
f^{-1}(0) & =\frac{0}{3}-\frac{2}{3} \\
f^{-1}(0) & =-\frac{2}{3} \\
f\left(\frac{2}{3}\right) & =3\left(-\frac{2}{3}\right)+2 \\
& =-2+2 \\
f\left(\frac{2}{3}\right) & =0
\end{aligned}
$$

Evaluate $f^{-1}(f(6))$.

$$
\begin{aligned}
f(6) & =3(6)+2 \\
& =18+2 \\
& =20
\end{aligned}
$$

$$
\begin{aligned}
f^{-1}(20) & =\frac{20}{3}-\frac{2}{3} \\
& =\frac{18}{3} \\
f^{-1}(f(x)) & =6
\end{aligned}
$$

$$
\begin{aligned}
& \text { Evaluate } f\left(f^{-1}(x)\right) \\
& \left.f(x)=3(x)+2 \quad f^{-1}(x)=\frac{x}{3}-\frac{2}{3}\right) \\
& f\left(f^{-1}(x)\right)=3\left(\frac{x}{3}-\frac{2}{3}\right)+2
\end{aligned}
$$

$$
f\left(f^{-1}(x)\right)=x
$$

$$
f^{-1}(x)=\frac{x-1}{2}
$$

1. Is the function $f(x)=(x-4)^{2}$ an invertible function? If not, restrict the domain so that $f(x)$ is an invertible function.

$$
\begin{aligned}
& y=(x-4)^{2} \\
& x=(y-4)^{2} \\
& \sqrt{x}=y-4 \\
& +4 \\
& +4 \\
& \sqrt{x}+4=y \\
& f^{-1}(x)=\sqrt{x}+4 \\
& x \geq 0
\end{aligned}
$$

2. If $f(x)=x^{3}-5$, show that $f^{-1}(x)=\sqrt[3]{x+5}$.

$$
\begin{aligned}
& y=x^{3}-5 \\
& x=y^{3}-5 \\
& +5+5
\end{aligned}
$$

$$
x+5=y^{3}
$$

Try It!
3. If $f(x)=\frac{x-10}{3}$, show that $f^{-1}(x)=3 x+10$.

$$
\begin{gathered}
(3) y=\frac{x-10}{3}(3) \\
3 y=x-10 \\
3 x=y-10 \\
+10+10 \\
3 x+10=y
\end{gathered}
$$

1. Two functions are given:

$$
f(x)=2 x+4 \quad g(x)=\frac{1}{2} x-2
$$

Some of these steps are used in the composition of functions to determine if $f(x)$ and $g(x)$ are inverses.
A $f\left(\frac{1}{2} x-2\right)$

C. $2\left(\frac{1}{2} x-2\right)$
D. $\frac{1}{2}(2 x+4)$
E. $x-4$

I. $x+2-2$

F. $g(2 x+4)$

1. $x+2-2$

$$
2\left(\frac{1}{2} x-2\right)+4
$$

Part A: Rearrange the steps in the correct order and write the steps in the correct spaces below.

Part B: Which of the following statements is correct?
(A) $f(x)$ and $g(x)$ are not inverses of each other because the inverse of $f(x)$ is $\frac{1}{4} x-2$.
(B) $f(x)$ and $g(x)$ are not inverses of each other because the inverse of $g(x)$ is $2 x+2$.
(c) $f(x)$ and $g(x)$ are not inverses of each other, but they are perpendicular to each other.
(1) $f(x)$ and $g(x)$ are inverses of each other.

