Inverse Variation: $\gamma = \frac{k}{\chi}$

Combined Variations

- 1. z varies jointly with x and y = Kxy
- 2. z varies jointly with x and y and inversely with w
- 3. z varies directly with x and inversely with the product of wy

Direct K = X Is the relationship between the values in each table a direct variation, an inverse variation. or neither? Write equations to model the direct and inverse variations. (3) (2)K=20 Neither Inverse λ= ×

Suppose that
$$x$$
 and y vary inversely. Write a function that models each inverse variation.

Suppose that x and y vary inversely. Write a function that models each inverse variation. Graph the function and find y when x = 10.

\(\)
$$x = 7 \text{ when } y = 2$$
\(\times = 2(7)\)
\(\times = 14\)
\(\times = 14\)
\(\times = 14\)
\(\times = 14\)
\(\times = 75\)
\((7,2)\)
\((10,75)\)

5)
$$x = \frac{1}{3}$$
 when $y = \frac{9}{10}$

$$k = \frac{1}{3} \left(\frac{9}{10} \right) = \frac{3}{10}$$

$$y = \frac{3}{10} = \frac{3}{10} = \frac{3}{100} = \frac{3}{100}$$

$$y = \frac{3}{10x} = \frac{3}{100(10)} = \frac{3}{100}$$

$$(\frac{1}{3}, \frac{3}{100}) \left(\frac{3}{100} \right)$$

Write the function that models each variation. Find z when x = 6 and y = 4.

(a) z varies jointly with x and y. When x = 7 and y = 2, z = 28.

Z=KXY

 $\frac{1}{7} = 2 \times y$ $\frac{1}{7} = \frac{1}{10} \left(\frac{1}{10} \right) \left(\frac{1}{10} \right)$

 $\int_{\mathbb{Z}} \sqrt{z}$ varies directly with x and inversely with the cube of y. When x = 8 and y = 2, z = 3.

Z=Kx

K=3

Z=

 $\frac{6}{3} = \frac{18}{64}$

32

Each ordered pair is from an inverse variation. Find the constant of variation.

$$0$$
 $\left(\frac{1}{3}, \frac{6}{7}\right)$

Each pair of values is from an inverse variation. Find the missing value.

$$\begin{cases} \begin{array}{c} & & \\ & \\ \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \begin{array}{c} & \\ \end{array} \\ \begin{array}{c} & \\ & \\ & \\ \end{array} \\ \begin{array}{c} & \\ & \\ \end{array} \\ \begin{array}{c} & \\ \end{array}$$

(1.2, 4.5), (2.7, y)

$$(1.2)(4.6) = 2.7y$$

 $5.4 = 2.7y$
 $y = 2$