
Bell Work

Find the inverse of each function. Is the inverse a function?

Y=b X= solution X=b b= base X=exponent

1096 y = X y=solution b=base X= exponent

Logarithms functions as inverses

$$2^{3} = 8$$
 $8^{3} = 2^{3} = 2^{9}$

Write each equation in logarithmic form.

1)
$$9^{2} = 81$$
 (2) $8^{3} = 512$ (3) $2^{9} = 512$ (4) $5^{4} = 625$
 $\log_{9} 81 = 2$ $\log_{8} 512 = 3$ $\log_{2} 512 = 9$ $\log_{5} 625 = 9$

Evaluate each logarithm.

5)
$$\log_{2}|28$$

 $\log_{2}|28 = \times$
 $2^{\times} = |28$
 $2^{\times} = 2^{7}$
 $\times = 7$

$$9 = 3^{2}$$

$$6) \log_{9} 27 = \times$$

$$9^{2} = 27$$

$$3^{2} = 3^{3}$$

$$2 \times = 3$$

$$X = 3$$

$$2 \times = 3$$

In 2004, an earthquake of magnitude 7.0 shook Papua, Indonesia. Compare the intensity level of that earthquake to the intensity level of each earthquake below.

$$I_{2} = M_{2} - M_{1}$$

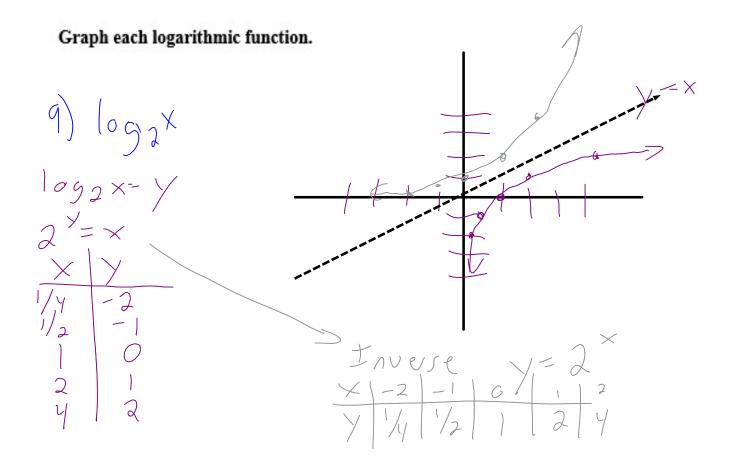
$$M = Magnitude$$

$$I_{1} = IO^{7.8-C.1} = IO^{1.7} - SO.12$$

$$M = Magnitude$$

$$I_{2} = IO^{7.8-C.1} = IO^{1.7} - SO.12$$

$$M = Magnitude$$


$$I_{2} = IO^{7.8-C.1} = IO^{1.7} - SO.12$$

$$M = Magnitude$$

$$I_{2} = IO^{1.7} - SO.12$$

$$I = IO^{1$$

5

Describe how the graph of each function compares with the graph of the parent function_s, $y = \log_{k} x$.

 $y = \log_3 X$ $|0\rangle y = \log_3 x - 2$ $\partial_0 \omega_n Z$

 $y = \log_6 (x+1) - 5$ left down 5

Write each equation in exponential form.

Find the inverse of each function.

 $17) = 052 \times$ $2^{\vee} = \times$ $2^{\times} = \gamma$

 $(18) y = |09_{100} \times 19_{105_2}(4x)$ $100^{Y} = \times \qquad \frac{2^{Y}}{\frac{1}{7}} = \frac{\frac{1}{7}}{\frac{1}{7}}$ $100^{X} = \frac{1}{7} \qquad 2^{X}$

 $\frac{\partial^{\times}}{\sqrt{2}} = \gamma$ $\frac{2^{\times}}{2^{2}} = \gamma$ $a^{\times -2} = \gamma$