Bell Work
Find the inverse of each function. Is the inverse a function?

$$
\begin{array}{lcc}
\text { 1) } f(x)=4 x-1 & (2) f(x)=x^{-1} & (3) f(x)=5 x^{3}+1 \\
y=4 x-1 & y=x^{7} & y=5 x^{3}+1 \\
x=4 y-1 & x=y & x=5 y^{3}+1 \\
x+1=41 y & y \sqrt{x}=y & \frac{x-1}{5}=y^{3} \\
\frac{x+1}{4}=y & y e s & 3 \sqrt{\frac{x-1}{5}}=y \\
f^{-1}(x)=\frac{x+1}{4} & & (x)=\sqrt[3]{\frac{x-1}{5}} \\
y e s & y e s
\end{array}
$$

$$
\log y=X
$$

$$
\begin{aligned}
& y=\text { solution } \\
& y=\text { have } \\
& x=\text { exponent }
\end{aligned}
$$

$$
2^{3}=8 \quad 8^{3}=2^{3(3)}=2^{9}
$$

Write each equation in logarithmic form.

$$
\begin{array}{llll}
\text { 1) } 9^{2}=81 & \text { (2) } 8^{3}=512 & \text { (3) } 2^{9}=512 & \text { (4) } 5^{4}=625 \\
\log _{9} 81=2 & \log _{8} 512=3 & \log _{2} 512=9 & \log _{5} 625=4
\end{array}
$$

Evaluate each logarithm.

$$
\begin{aligned}
& \text { 5) } \log _{2} 128 \\
& \log _{2} 128=x \\
& 2^{x}=128 \\
& 2^{x}=2^{7}
\end{aligned}
$$

$$
\text { 6) } \begin{gathered}
\log _{9} 27=x \\
9^{x}=27 \\
3^{2 x}=3^{3} \\
2 x=3 \\
x=\frac{3}{2}
\end{gathered}
$$

In 2004, an earthquake of magnitude 7.0 shook' Papua, Indonesia. Compare the intensity level of that earthquake to the intensity level of each earthquake below.

$$
\begin{aligned}
& I=\text { intensity level } \\
& M=\text { Magnitude } \\
& I_{2}=10^{7.8-6.1}=10^{1.7}=50.12 \\
& \text { 7) magnitude } 6.1 \text { in Costa Rich, in } 2009 \\
& \log \frac{I_{2}}{I_{0}}=7-6.1 \quad \text { The } I_{n} \text { donnesia earthquake }^{2} \\
& \text { is } 7.94 \text { times more } \\
& \text { inverse than } \\
& \text { costa Rich } \\
& \text { magnitude } 7.8 \text { in the Fiji Islands, in } 2007 \\
& \text { Fiji enrthguake is } 6.31 \\
& \text { times more intake than } \\
& \text { Indonesia }
\end{aligned}
$$

Describe how the graph of each function compares with the graph of the parent function ${ }_{3} y=\log _{b} x$.

$$
\begin{aligned}
& y=\log _{3} x \\
& \text { (0) } y=\log _{3} x-2 \\
& \text { own } 2
\end{aligned}
$$

$$
\begin{gathered}
\text { II) } y=\log _{6}(x+1)-5 \\
\text { left } \\
\text { down } 5
\end{gathered}
$$

Write each equation in exponential form.

$$
\begin{array}{ll}
\text { 12) } \log _{4} 256=4 & 4^{4}=256 \\
\text { (3) } \log _{2} 32=5 & 2^{5}=32 \\
\text { (4) } \log _{5} 5=1 & 5^{\prime}=5 \\
\text { (5) } \log _{9} 99,049=5 & 9^{5}=59,049 \\
\text { (6) } \log _{36} 1=0 & 36^{0}=1
\end{array}
$$

Find the inverse of each function.

$$
\begin{aligned}
& \text { 17) } y=\log _{2} x \\
& 2^{y}=x \\
& 100^{y}=x \\
& \text { (9) } y=\log _{2}(4 x) \\
& \text { (18) } y=\log _{106} x \\
& \frac{2^{y}}{4}=\frac{4 x}{4} \\
& 2^{x}=y \\
& 100^{x}=y
\end{aligned}
$$

