

Oct 2-7:14 AM

What happens in long division when we have a remainder? $\frac{295}{7} \quad \begin{gathered} \frac{42}{295} \\ \frac{28}{15} \\ \frac{14}{1} \end{gathered} \quad 42 \frac{1}{7}$
We follow this same method when dividing polynomial Find $f(x) \div g(x)=7 x^{2}-12 x+50-\frac{201}{x+4} \quad x+4 \sqrt{7 x^{3}+16 x^{2}+2 x-1}$ functions. $\begin{gathered} f(x)=7 x^{3}+16 x^{2}+2 x-1 \\ g(x)=x+4 \end{gathered}$ $\Leftrightarrow \frac{\frac{2 x^{3}+28 x^{2}}{-12 x^{2}+2 x}}{} \begin{array}{r}\rightarrow-\frac{12 x^{2}-48 x}{50 x}-1 \\ \left(\rightarrow \frac{50 x+200}{-201}\right.\end{array}$

Oct 2-7:20 AM

Oct 2-7:39 AM

We can use long division to divide polynomial functions and rewrite rational expressions.

Find the quotient, $q(x)$, of $a(x)$ and $b(x)$.
Oct 2-7:19 AM
Let's Practice!

1. Find the quotient of the functions below.
$i(x)=2 x^{3}-x^{2}-13 x+1$

$$
\begin{gathered}
i(x) \div j(x)=\frac{j(x)=x^{2}+3 x-5}{2 x-7+\frac{18 x-34}{x^{2}+3 x-5}} \\
x^{2}+3 x-5 \sqrt{2 x^{3}-x^{2}-13 x+7} \\
\frac{\left(-1 x^{2}+6 x^{2}-10 x\right.}{-7 x^{2}-3 x+1} \\
\frac{\left(-1 x^{2}-21 x+35\right.}{18 x-34}
\end{gathered}
$$

Oct 2-7:32 AM

Oct 2-7:41 AM

$$
\begin{aligned}
& \frac{2 x-5}{x+2 \sqrt{2 x^{2}-x-10}} \quad \begin{array}{c}
a(x)=2 x^{2}-x-10 \\
b(x)=x+2
\end{array}
\end{aligned}
$$

Oct 3-6:21 AM

