Bell Work:

In Standard form $(\mathrm{Ax}+\mathrm{By}=\mathrm{C})$, what two points on the graph does this form give us?

In point slope form $\left(y-y_{1}=m\left(x-x_{1}\right)\right.$, what does m, x_{1}, and y_{1} mean?

$$
n=\text { slope }\left(x_{1}, y_{1}\right)=\text { given point }
$$

More About Linear Equations

Write an equation of each line.

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

1. slope 6 ; through $(0,4)$

$$
\begin{aligned}
& y-4=6(x-0) \\
& y-4=6 x \\
& y=6 x+4
\end{aligned}
$$

9. slope -5 ; through $(9,-1)$

$$
\begin{gathered}
y+1=-5(x-9) \\
y+1=-5 x+45 \\
y=-5 x+44
\end{gathered}
$$

Write in point-slope form an equation of the line through each pair of points. To start, substitute values for $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ into the slope formula.

$$
\frac{3}{2}-\frac{5}{2}-\frac{-2}{2}
$$

35. $(2,7)$ and $(-4,1)$
$\frac{7-1}{2-(-4)}=\frac{6}{6}=1$

$$
\begin{gathered}
\text { 4. }\left(\frac{3}{4}, \frac{5}{2}\right) \text { and }\left(-\frac{7}{8}, \frac{3}{2}\right) \sqrt{-\frac{7}{8}-\frac{3}{4} \frac{6}{8}}=\frac{-13}{8} \\
-\frac{2}{2} \cdot \frac{8}{-13}=\frac{-16}{-26}=\frac{8}{13}
\end{gathered}
$$

$$
y-7=1(x-2)
$$

$y-1=1(x+4)$

$$
y-\frac{5}{2}=\frac{8}{13}\left(x-\frac{3}{4}\right)
$$

$$
A x+B y=C
$$

Write an equation of each line in standard form with integer coefficients. To start, multiply each side by the least common denominator of all fractional coefficients.

$$
\begin{array}{ll}
59 .\left(y=-\frac{4}{3} x+\frac{5}{6}\right) \\
61 y=\frac{-21}{3} x+\frac{30}{6} \\
6 y=-8 x+5 \\
6 y+8 x=5 & 8 x+6 \\
6 y & 8=5
\end{array}
$$

G
(4. Reasoning The line $y+4=\frac{3}{4}(x-8)$ contains point $(a, 2)$. Find a. Show your work.

$$
\begin{array}{rlr}
2+4 & =\frac{3}{4}(a-8) & \frac{3}{4}=8=\frac{24}{4} \\
6 & =\frac{3}{4} a-6 & a=16
\end{array}
$$

Find the intercepts and graph each line.

$$
\begin{array}{cc}
7 & -2 x+y=6 \\
x-\ln t & y-\operatorname{in} t \\
-2 x+0=6 & -2(0)+y=6 \\
-2 x=6 & y=6 \\
x=-3 & (0,6) \\
(-3,0) &
\end{array}
$$

Write an equation in slope-intercept form for each line.
8 . the line parallel to $y=4 x-1$ through $(2,7)$

9 . the line perpendicular to $y=-\frac{1}{3} x+5$ through $(6,3)$

$$
\begin{aligned}
y-3 & =3(x-6) \\
y-3 & =3 x-18 \\
y & =3 x-15
\end{aligned}
$$

