Let's extend our understanding of the distributive property by learning how to multiply polynomials.

Let's Practice!

1. Two polynomial functions are given.

$$
\begin{gathered}
f(x)=-8 x^{2} \\
g(x)=3 x^{2}-20
\end{gathered}
$$

Find $f(x) \cdot g(x)$ and write an equivalent expression.

$$
\begin{aligned}
& -8 x^{2}\left(3 x^{2}-20\right) \\
& -24 x^{4}+160 x^{2}
\end{aligned}
$$

2. Two polynomial functions are given.

$$
\begin{array}{ll}
\frac{2}{3} \cdot 9 & h(m)=\frac{2}{3} m^{4}-2 \\
\frac{2}{3} \cdot \frac{9}{1} & g(m)=\frac{1}{2} m^{2}-9
\end{array}
$$

Find $h(m) \cdot g(m)$ and write an equivalent expression.

$$
\begin{aligned}
& \left(\frac{2}{3} m^{4}-2\right)\left(\frac{1}{2} m^{2}-9\right) \\
& \frac{2}{6} m^{6}-\frac{18}{3} m^{4}-\frac{2}{2} m^{2}+18 \\
& \frac{1}{3} m^{6}-6 m^{4}-m^{2}+18
\end{aligned}
$$

3. Two polynomial functions are given.

$$
\begin{gathered}
r(x)=3 x^{2}+4 x-4 \\
l(x)=3 x+6
\end{gathered}
$$

Find $r(x) \cdot l(x)$ and write an equivalent expression.

$$
\begin{gathered}
\left(3 x^{2}+4 x-4\right)(3 x+6) \\
9 x^{3}+18 x^{2}+12 x^{2}+24 x-12 x-24 \\
9 x^{3}+30 x^{2}+12 x-24
\end{gathered}
$$

4. A polynomial function is given.

$$
n(a)=2 a^{2}-a+1
$$

Try It!
5. Two polynomial functions are given.

$$
\begin{gathered}
b(y)=\left(7 y^{4}-9 y^{2}+5 y\right)-2 \\
a(x)=x^{2}-6 x
\end{gathered}
$$

Find $-2 b(y) \cdot a(x)$ ane write an equivalent expression.

$$
\begin{gathered}
\left(-14 y^{4}+18 y^{2}-10 y\right)\left(x^{2}-6 x\right) \\
-14 x^{2} y^{4}+84 x y^{4}+18 x^{2} y^{2}-108 x y^{2}-10 x^{2} y+60 x y
\end{gathered}
$$

6. A polynomial function is given.

$$
c(b)=2 b^{2}-5 b
$$

Find $(c(b))^{3}$ and write an equivalent expression.

$$
\begin{aligned}
& \left(2 b^{2}-5 b\right)\left(2 b^{2}-5 b\right)\left(2 b^{2}-5 b\right) \\
& 4 b^{4}-10 b^{3}-10 b^{3}+25 b^{2} \\
& \left(4 b^{4}-20 b^{3}+25 b^{2}\right)\left(2 b^{2}-5 b\right) \\
& 8 b^{6}-20 b^{5}-40 b^{5}+100 b^{4}+50 b^{4}-125 b^{3} \\
& 8 b^{6}-60 b^{5}+150 b^{4}-125 b^{3}
\end{aligned}
$$

BEAT THE TEST!

1. Consider the figure below. $A \rightarrow$

$$
\left(x^{2}-1\right) \mathrm{ft} \left\lvert\, \begin{array}{cc}
\begin{array}{c}
(-x+8) \\
(8-x) \mathrm{ft}
\end{array} & \left(3->\left(x^{3}-2 x^{2}-3 x-4\right)(3 x-2)\right. \\
\left(x^{3}-2 x^{2}-3 x-4\right) \\
\left(x^{3}-2 x^{2}-4 x+4\right) \mathrm{ft}-(-x+8) \\
(3 x-2) \mathrm{ft}
\end{array}\right.
$$

Write a function to represent the total area, in square feet, of the above figure.

$$
\begin{aligned}
& A \rightarrow\left(x^{2}-1\right)(-x+8) \\
& B \rightarrow\left(x^{3}-2 x^{2} 3 x-4\right)(3 x-2)
\end{aligned}
$$

$$
\begin{array}{ll}
\left(x^{2}-1\right)(-x+8) & 3 x^{4}-2 x^{3}-6 x^{3}+4 x^{2}-9 x^{2}+6 x-12 x+8 \\
-x^{3}+8 x^{2}+x-8 \\
3 x^{4}-8 x^{2}-5 x^{2}-6 x+8
\end{array}
$$

$$
3 x^{4}-9 x^{3}+3 x^{2}-5 x \text { units }{ }^{2}
$$

