Bell Work: Day 1
Use any positive \#

$$
\begin{aligned}
& \text { 1. } \log (\#) \\
& \text { 2. } 2(\text { answer } \# 1) \\
& \text { 3. Answer \#2 }+4 \\
& \text { 4. } 10^{\text {cnswer\#3 }} \\
& \text { 5. } \sqrt{\text { answer \#4 }} \\
& \text { 6. answer } 5 / 100
\end{aligned}
$$

Properties of logarithms can be derived from the properties of exponents because logarithms and exponents have corresponding properties.
$\operatorname{Let} x=\log _{b} m \quad y=\log _{b} n$
product
proper tl
$b^{x}=m$
$n=b^{y}$

$$
\begin{aligned}
m \cdot n & =b^{x} \cdot b^{y} \\
m n & =b^{x+y} \\
\log _{b} m n & =x+y \\
\log _{b} m n & =\log _{b} m+\log _{b} n
\end{aligned}
$$

Properties of Logarithms

For any positive numbers, m, n and b where $b \neq 1$

Product Property: $\log _{b} m n=\log _{b} m+\log _{b} n$
Quotient Property: $\log _{b} \frac{m}{n}=\log _{b} m-\log _{b} n$
Power Property: $\log _{b} m^{n}=n \log _{b} m$

Properties of Logarithms
Write each expression as a single logarithm.

$$
\begin{array}{lll}
l \log _{5} 4+\log _{5} 3 & 2 \cdot \log _{2} 4+\log _{2} 2-\log _{2} 8 & 3 \cdot \log 7-\log 3+\log 6 \\
\log _{5} 4 \cdot 3 & \log _{2} \frac{4(2)}{8} & \log \frac{7}{3}(6) \\
\log _{5} 12 & \log _{2} 1 & \log \frac{42}{3} \\
& & \log 14
\end{array}
$$

1. Use the power property if possible

$$
\begin{aligned}
& \text { 4. } \log _{2} 4 x+2 \log _{3} 5 y \quad\left(5 \cdot 2 \log 4+\log 2+\log 2 \quad\left(6.5 \log x+3 \log x^{2}\right.\right. \\
& \log _{3} 4 x+\log _{3}(5 y)^{2} \quad \log y^{2}+\log ^{2}+\log 22 \log x^{5}+\log x^{2 \cdot 3} \\
& \log _{3} 4 x+\log _{3} 25 y^{2} \overbrace{2}^{\log 16+\log ^{2}+\log ^{2} 2} \log ^{64} \\
& \begin{array}{c}
\log x^{5}+\log x^{6} \\
\log x^{5} \cdot x^{6} \\
\log x^{11}
\end{array}
\end{aligned}
$$

$$
\begin{array}{lll}
7 \log 2+\log 4-\log 7 & \text { 8. } & 3\left(4 \log t^{2}\right) \\
\log \frac{8}{7} & 3\left(\log t^{2.4}\right) \\
& 3 \log t^{8} \\
& \log t^{24}
\end{array}
$$

Expand each logarithm. Simplify if possible.

$$
\begin{array}{l|l}
\text { 9) } \log _{2} \frac{x}{y z} & \log \log \sqrt{\frac{2 v s t}{5 w}}=\log \left(\frac{2 \cos t}{5 w}\right)^{\frac{1}{2}} \\
\log _{2} x-\log y z & \log \frac{2^{\frac{1}{2}} r^{\frac{1}{2}} 5^{\frac{1}{2}} t^{\frac{1}{2}}}{5^{\frac{1}{2}} w^{\frac{1}{2}}} \\
\underbrace{}_{\log 2 x-\log 2 y-\log _{2} z \mid} \log ^{\frac{1}{2}}+\log r^{\frac{1}{2}}+\log 5^{\frac{1}{2}}+\log t^{\frac{1}{2}}-\log 5^{\frac{1}{2}} \log w^{\frac{1}{2}} \\
\frac{1}{2} \log 2+\frac{1}{2} \log r+\frac{1}{2} \log 5+\frac{1}{2} \log t-\frac{1}{2} \log 5-\frac{1}{2} \log w
\end{array}
$$

$$
\begin{array}{ll}
\text { 11) } \begin{array}{ll}
\log _{5} 5 x^{-5} & \text { (2) } \log _{4}(3 x y z)^{2} \\
\log _{5} 5+\log _{5} x^{-5} & \log _{4} 3^{2} x^{2} y^{2} z^{2} \\
\log _{5} 5+\left(-5 \log _{5} x\right) & \log _{y} 9+\log _{4} x^{2}+\log _{y} y 2+\log _{y} z^{2} 9+2 \log _{4} x+2 \log _{y} y+2 \log _{14} z \\
\log _{5} 5-5 \log _{5} x & \\
\text { or } \\
1-5 \log _{5} x &
\end{array} \quad .
\end{array}
$$

Bell work Day 2

$$
\begin{aligned}
& \text { Simplify } \\
& \text { 1) } 2 \log _{4} 6-\log _{4} 9 \\
& \log _{4} 6^{2}-\log _{4} 9 \\
& \log _{4} 36-\log _{4} 9 \\
& \log _{4} \frac{36}{9} \\
& \log _{4} 4 \\
& =1
\end{aligned}
$$

Change of Base
$\log _{b} m=x$

$$
g_{b} m=x
$$

$$
b^{x}=m
$$

$$
\log _{c} b^{x}=\log _{c} m
$$

$\log _{c} b^{x}=\log _{c} m$

$$
x \log _{c} b=\log _{c} m
$$

$$
x=\frac{\log _{c} m}{\log _{c} b} \rightarrow
$$

$b \neq 1, c \neq 1$
$x \log _{c} b=\log _{c} m$
$x=\frac{\log _{c} m}{\log _{c} b} \rightarrow \log _{b} m=\frac{\log _{c} m}{\log _{c} b}$
TI-30×IS

Use the Change of Base Formula to evaluate each expression. Round your answer to the nearest thousandth.

$2) \log _{2} 15$

$2 y=5$

$$
y=2.5
$$

Use the properties of logarithms to evaluate each expression. $162^{\frac{1}{4}}=\sqrt[4]{162}$

4) $\log _{7} 14-\log _{7} 2$

$$
\log _{7} \frac{14}{2}
$$

$$
\log _{7} 7 \frac{\log 7}{\log 7}
$$

$$
\begin{aligned}
& 5) \frac{1}{4} \log _{3} 162-\log _{3} \sqrt[4]{2} \\
& \log _{3} 162-\log _{3} \sqrt[4]{4} \sqrt{2} \\
& \log _{3} \sqrt[4]{162}-\log _{3} \sqrt[y]{2} \\
& \log _{3} \frac{\sqrt[4]{162}}{\sqrt[4]{2}} \\
& \log _{3} \sqrt[4]{81} \\
& \log _{3} 3=1 \\
& \frac{\log _{3} 3}{\log _{3}}
\end{aligned}
$$

