Bell Work:

$$
\text { Graph } y=-\frac{1}{3} x^{2}
$$

$$
\begin{array}{c|c|c|c|}
x & -3 & 0 & 3 \\
\hline y & -3 & 0 & -3
\end{array}
$$

$$
\left.\begin{array}{ll}
-\frac{1}{3}(-3)^{2} & \frac{1}{3}(0)^{2}
\end{array}-\frac{1}{3}(3)^{2}\right) \quad-\frac{1}{3}(9)
$$

Graph each function.

$$
\text { 1) } f(x)=x^{2}-2
$$

$$
\begin{array}{ll}
(-1)^{2}-2 & \\
1-2=-1 & (1)^{2}-2 \\
(0)^{2}-1 & 1-2^{2}=-1 \\
0-2=-2 &
\end{array}
$$

$$
\begin{aligned}
& f(x)=\text { function of } x \\
& \text { 2) (})=12=1-2)^{2}=(-2)(-2) \\
& \text { 2) } \begin{aligned}
f(x) & =-\frac{1}{2} x^{2}+5 \\
y & =-\frac{1}{2} x^{2}+5
\end{aligned} \\
& \begin{array}{c|c|c|c|}
x & -2 & 0 & 2 \\
\hline y & 3 & 5 & 3
\end{array} \\
& -\frac{1}{2}(-2)^{2}+5 \\
& -\frac{1}{2}(4)+5 \\
& -2+5=3 \\
& -\frac{1}{2}(2)^{2}+5 \\
& -\frac{1}{2}(y)+5
\end{aligned}
$$

3) A relief organization flew over a village and dropped a package of food and medicine.

The plane is flying at 1000 feet. The function gives the package's height h above the ground (in feet) after t seconds. Graph the function. How many seconds does it take for the package to hit the ground?

t	0	2	11	5	7	8
h	1000	936	-936	600	$2 / 6$	-24

$-16(2)^{2}+1000 \quad-16(5)^{2}+1000$
$-16(y)+1000$
$-64+1000$
936
$-16(11)^{2}+1000$
$-16(121)+1000$
$-1936+1000$
-936
$-16(25)+1000$
$-400+1000$
$-16(7)^{2}+1000$
$-16(49)+1000$
$-784+1000$
216

$$
\begin{gathered}
0=-16 t^{2}+1000 \\
+16 t^{2}+16 t^{2} \\
16 t^{2}=1000 \\
t^{2}=162.5 \\
t=\sqrt{62.5} \\
t=7.9
\end{gathered}
$$

Seconds

$$
\text { y) } y=c_{5 x^{2}-5}^{p \text { os }}
$$

D. All real \#'s R $y \geq-5$

D:allreal \#'s
$y^{2} \geq-2$

neg

D: All real \#'s
$p: y \leq 3$
7) $f(x)=-9 x^{2}+1$

D: all real \#'s

$$
y \leq 1
$$

