Radical Equations and graphs Review

Simplify.

1. $20^{\frac{1}{2}} \cdot 20^{\frac{1}{2}} \sqrt{20} \cdot \sqrt{20}=20$
2. $3^{\frac{1}{3}} \cdot 9^{\frac{1}{3}} \sqrt[3]{3} \cdot \sqrt[3]{9}=\sqrt[3]{27}=3$
3. Write the exponential expression $3 x^{\frac{3}{8}}$ in radical form. $3 \sqrt[8]{x^{3}}$
4. Write $\left(8 a^{-3}\right)^{-\frac{2}{3}}$ in simplest form.

$$
8^{-\frac{2}{3}} a^{2}=\frac{a^{2}}{8^{2 / 3}}=\frac{a^{2}}{(\sqrt[3]{8})^{2}}=\frac{a^{2}}{(2)^{2}}=\frac{a^{2}}{4}
$$

What is the solution of the equation?
5. $\sqrt{x+10}-7=-5$
$\sqrt{x+10}=2^{2}$
$x+10=4$

$$
x=-G
$$

6. $\begin{aligned} \sqrt{2 x+8}-6 & =-4 \\ \sqrt{2 x+8} & =2^{2}\end{aligned}$
$2 x+8=4$
$2 x=-4$

$$
x=-2
$$

$$
\text { 7. } \begin{gathered}
-10+\sqrt{x+8}=-4 \\
\sqrt{x+8}=G^{2} \\
x+8=36 \\
x=28
\end{gathered}
$$

8. $(x+6)^{\frac{3}{5}}=8$

$$
\begin{aligned}
& x+6=8 \\
& x+6=(\sqrt[3]{8})^{5} \\
& x+6=(2)^{5}
\end{aligned}
$$

$$
x+6=32
$$

$$
x=26
$$

What is the solution of the equation? Eliminate any extraneous solutions.
9. $(-2 x+6)^{\frac{1}{5}}=(-8+10 x)^{\frac{1}{5}}$
$-2 x+6=-8+10 x$ $-10 x-6$
$-12 x=-14$ $-12-12$
$x=\frac{7}{6}$
10. $(5 x)^{2}=(\sqrt{10+15 x})^{2}$
$25 x^{2}=10+15 x$
$25 x^{2}-15 x-10=0$
$5\left(5 x^{2}-3 x-2\right)=0 \quad \frac{-10 \mid-3}{2(5) \left\lvert\, \frac{2}{5}-\frac{5}{5}\right.}$
$5\left(x+\frac{2}{5}\right)(x-1)=0 \quad 5(1)=5$
$5 x=-2 \times 2$
$5\left(-\frac{2}{5}\right)=-2$

36
$\left.6(6)\right|_{1}$
$4(9)$

Graph the equation.

$$
\begin{array}{cc}
x+3=0 & x+3=1 \\
x-3 & x=-2 \\
\sqrt{0}=0 & \sqrt{1}=1
\end{array}
$$

15. $y=\sqrt[3]{x-1}+1$

$$
\begin{gathered}
x-1=-8 \\
x=-7 \\
x-1=-1 \\
x=0 \\
x-1=0 \\
x=1 \\
x-1=1 \\
x=2 \\
x-1=8 \\
x=9
\end{gathered}
$$

$$
\sqrt[3]{-8}+1=-2+1=-1
$$

$$
\sqrt[3]{-1}+1=-1+1=0
$$

$$
\sqrt[3]{\sigma}+1=1 \quad \sqrt[3]{8}+1=2+1=3
$$

$$
\sqrt[3]{1}+1=1+1=2
$$

16. Rewrite $y=\sqrt{9 x-36}-4$ to make it easy to graph using a translation. Describe the graph.

right y units

