Bell Work $\quad-2 \nmid$
Factor

Rational Functions and Their Graphs
Find the domain, points of discontinuity, and x - and y-intercepts of each rational function. Determine whether the discontinuities are removable or nonremovable.

$$
\text { 1) } y=\frac{(x-4)(x+3)}{x+3}
$$

$$
\begin{aligned}
D: & x+3 \\
x & =0 \\
x & =-3 \quad x \neq-3
\end{aligned}
$$

$$
\text { P.O.D: } \quad x=-3
$$

removable (hole)

$$
y-\ln t: \quad y=-4 \quad y=0-4
$$

$$
\begin{aligned}
x-\ln t: 0 & =x-4 \\
x & =4
\end{aligned}
$$

2) $y=\frac{4 x}{x^{4}+16}$

$$
\begin{gathered}
10: x^{4}+16=0 \quad(-\infty, \infty) \\
x^{4}=-16
\end{gathered}
$$

$$
P \cdot O \cdot M=\text { none }
$$

$$
y-\ln t: \quad y=0
$$

$$
x \cdot n t=0=\frac{4 x}{x^{4}+16}
$$

$$
0=4 x
$$

Find the vertical asymptotes and holes for the graph of each rational function.

$$
\begin{aligned}
& \begin{array}{l}
\text { 3) } y=\frac{5-x}{x^{2}-1}=-\frac{x-5}{(x+1)(x-1)} \text { 4) } y=\frac{x}{x=-1(x-1)}, \\
\text { P. OD }=-1,1 \text { x-1, }
\end{array} \\
& \text { P.O.D. } x=0=\text { hole } \\
& \begin{array}{ll:|:}
\text { nonremolab/e } \\
\text { VA: } & \vdots=-1,1
\end{array} \quad \vdots \quad \vdots \\
& \text { 4) } y=\frac{x}{x(x-1)} \quad \text { P.O.P } \begin{aligned}
x=0=\text { hole } \\
x=1=\mathbb{C}, A
\end{aligned} \\
& \text { PrOD }=-1,1 \quad x=-1,1 \\
& \text { nonremovable } \\
& \text { UnA: } x=-1,1 \\
& \text { 6) } y=\frac{x^{2}-25}{x-4}=\frac{(x+5)(x-5)}{x-4} \\
& \text { 5) } y=\frac{x-2}{(x+2)(x-2)} \\
& x=-2,2 \\
& x=-2=V . A \text {. } \\
& x=2 \text {, hole } \\
& x=4=v \cdot A \\
& \text { no holes }
\end{aligned}
$$

Find the horizontal asymptote of the graph of each rational function.

$$
\begin{aligned}
& \text { 7) } y-\frac{2}{x-6} \text { degree }=0 \quad \text { d) } y=\frac{2(x+3}{\rho-6}=1 \quad \text { desire: } 2 \\
& H \cdot A=y=\left.0 \quad\right|^{y}-x \\
& \frac{a^{n}}{b^{m}}=\text { leading term of both } \\
& H \cdot A=\frac{2}{1}=2=y \\
& \cdots \neq \cdots \\
& \text { and denominator }
\end{aligned}
$$

Bell work

$$
y=\frac{x^{2}+2 x-3}{x^{2}+7 x+12}
$$

VA $=x=-4$
$x-\ln t ; x=-3,1$
$y-\ln t=\frac{-1}{4}$

Identify the horizontal and vertical asymptotes along with the x and y intercepts. Graph each function

$$
\begin{aligned}
& y=\frac{3}{x-2} \\
& H \cdot A=Y=C \\
& \text { hole }=\text { none } \\
& V A=x=2 \\
& x-\cap t=\operatorname{none} \\
& y-\cap t=\frac{3}{-2} \\
& x=3, \frac{3}{3-2}=\frac{3}{1}=3
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{x+2}{x-1} \\
& H \cdot A=Y=1 \\
& \text { hole }=\text { none } \\
& \text { VA }=x=1 \\
& X-\operatorname{nit} t \\
& x+2=0 \\
& x=-2 \\
& Y-\operatorname{in} t=\frac{2}{-1}=-2
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
y=\frac{x^{2}-1}{x^{2}-4}=\frac{(x+1)(x-1)}{(x+2)(x-2)} \\
\text { HA }=y=1 \\
\text { hole }=\operatorname{non} C \\
\text { VA: } x=-2,2 \\
\text { x-int: } x=1,-1 \\
y-\ln t:-\frac{1}{4}=\frac{1}{4} \\
\frac{3 x^{2}-5}{2 x^{2}+4}=\quad \text { HA }=\frac{3}{2}-y
\end{array} \quad x=-3 \frac{(-3)^{2}-1}{(-3)^{2}-4}=\frac{8}{5}
\end{aligned}
$$

How many milliters of a 0.5% saline solution must be added to a 75 mL of 2% saline solution to get a 0.65% salinfsolution

$$
\begin{array}{r}
.005 x+75(.02)=.0065(x+75) \\
.005 x+1.5=.0065 x+.4875 \\
-.4875 \quad-.005 x \\
1.0125= \\
x=675 \mathrm{~m} l \\
\text { of } 0.5 \% \\
\text { saline solution }
\end{array}
$$

