Section 3 – Topic 2 Introduction to Piecewise-Defined Functions – Part 2

Let's Practice!

Consider the piecewise function f(x) below:

$$f(x) = \begin{cases} -x + 5, & 0 < x < 6 \\ x^2 + 2, & x \ge 6 \end{cases}$$

1. Evaluate
$$f(2)$$
. $-(2) + 5 = -2 + 5 = 3$ $+(2) = 3$

2. Evaluate
$$f(6)$$
. $(6)^2 + 2 = 36 + 2 = 38$

1. Evaluate
$$f(2)$$
. $-(2) + 5 = -2 + 5 = 3$ $f(2) = 3$
2. Evaluate $f(6)$. $(6)^2 + 2 = 36 + 2 = 38$ $f(6) = 38$
3. Evaluate $f(8)$. $(8)^2 + 2 = 66$ $f(8) = 66$

Try It!

4. The piecewise function f(x) is defined below.

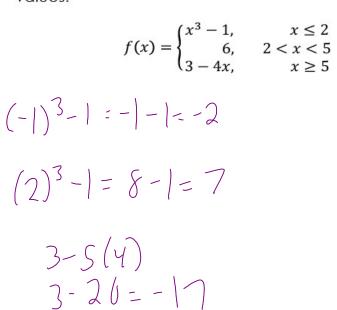
$$f(x) = \begin{cases} kx + 2, & x \le 1 \\ x^2 + 3, & x > 1 \end{cases}$$

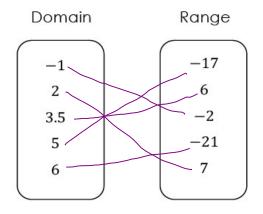
For what value of k, if any, is f(x) continuous at x = 1.

①
$$(1)^2 + 3 = f(1)$$
 $k(1) + 2 = 4$
 $4 = f(1)$ $k + 2 = 4$
 $k = 2$

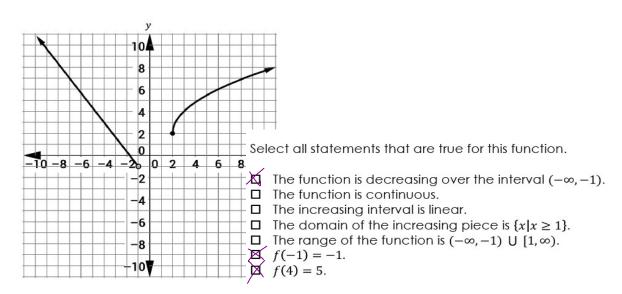
5. Consider the following piecewise function.

$$f(x) = \begin{cases} -3x + 2, & x < 3\\ 4, & 3 \le x < 7\\ 2x + 10, & x \ge 7 \end{cases}$$


- a. Evaluate f(-7). -3(-7)+2=21+2+23
- b. Evaluate f(3).


$$c) f(y)=(y)$$

$$d) + (1) = 2(1) + 10 = 14 + 10 = 24$$


BEAT THE TEST!

1. Evaluate the piecewise-defined function for the given values of *x* by matching the domain values with the range values.

2. Consider the following graph of a piecewise-defined function.

