
section 3 topic 4 graphing and writing piecewise-defined functions - part 2 111 of the paper of the capit 9

Section 3 – Topic 4 Graphing and Writing Piecewise–Defined Functions – Part 2

A piecewise-defined function can also be written from a graph.

The graph of a piecewise-defined function is given below. In order to write the function represented by this graph, we must examine each piece separately.

How many "pieces" will form the piecewise function?

section 3 topic 4 graphing and writing piecewise-defined functions - part 2 1N of vep2beotte40 226N 9

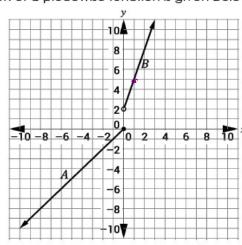
1
Both A and B are $1000000000000000000000000000000000000$
At which x –value does piece A begin? Where does it end?
$(-\infty,-1)$
What does the closed circle tell us about the domain restriction for piece A?
included
At which x –value does piece B begin? Where does it end?
$\left(-\frac{1}{2}\right)$

section 3 topic 4 graphing and writing piecewise-defined functions - part 2 111 of Mep 20 ne ot 1240 020 14 9

What does the open circle tell us about the domain restriction for piece B?

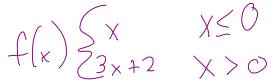
Write the piecewise-defined function represented by the

graph.


$$f(x) = \begin{cases} -x+2 & x \leq -1 \\ 2x+1 & x > -1 \end{cases}$$

What is the domain of the function? What is the range?

section 3 topic 4 graphing and writing piecewise-defined functions - part 2 111 of wep 20 ne otteto 2004 9

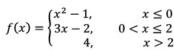

Try It!

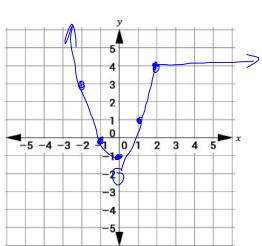
1. The graph of a piecewise function is given below.

V= Unida -gap or break in smph

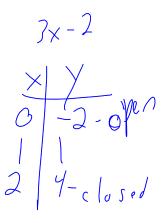
a. Write a piecewise function that represents the graph.

b. What is the domain of the function? What is the range?

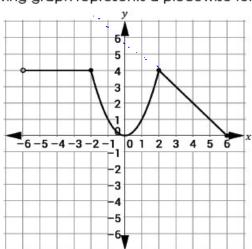

c. How do you know that the graph represents a - lury X-Va be has function?


exactly one y-value


section 3 topic 4 graphing and writing piecewise-defined functions - part 2 1Novep2beottxb20019


BEAT THE TEST!

1. Graph the following piecewise-defined function:



2. The following graph represents a piecewise function.

Part A: Write a piecewise function that represents the graph.

section 3 topic 4 graphing and writing piecewise-defined functions - part 2 111 of vep2beotletg 22614

Part B:	Which	of the	following	g state	ments	are	true	abou	t
	the are	aph? (Check al	I that c	.vlaga				

- $\Box \quad f(x) = x^2, \text{ where } -2 \le x \le 2.$
- \square The quadratic graph has a maximum at (0,4).
- \square The graph has an undefined slope when $-6 < x \le -2$.
- The graph is decreasing when the domain is $(-2,0) \cup (2,6)$.
- □ The domain of this piecewise function is $-6 \le x \le 6$.