Section 4 - Topic 2

Solving Quadratic Equations by Factoring
To solve a quadratic equation by factoring. Write the quadratic in standard form, $a x^{2}+b x+c=0$ and factor out the greatest common factor, if possible.

There are two ways to factor.
master product method
> Use the to factor the trinomial.
> Use factoring by grouping.

Then, use the zero product property to find the solutions.

Let's Practice!

1. Consider the equation $2 c^{2}-9=3 c . \quad 2 c^{2}-3 c-9=0$ a. Use the area model to factor. $\quad a=2 \quad b=-3 \quad c=-9$

$$
2 c^{2}-3 c-9
$$

b. Factor by grouping.

$$
\begin{aligned}
& 2 c^{2}+3 c-6 c-9 \quad(2 c+3)(c-3) \\
& \left(2 c^{2}+3 c\right)(-6 c-9) \\
& c(2 c+3)-3(2 c+3)
\end{aligned}
$$

Try It!
2. Solve the quadratic equation below using factoring by grouping. Identify the property used in each step to solve the equation.

$$
\begin{gathered}
\begin{array}{c}
+5 x+2=-5 x^{2} \\
+5 x^{2} \\
5 x^{2}+11 x+2=0 \\
a=5 \quad b=11 \quad c=2 \\
\left(x+\frac{10}{5}\right)\left(x+\frac{1}{5}\right) \\
(x+2)(5 x+1)
\end{array}, ~
\end{gathered}
$$

Let's investigate factoring by substitution. perfect square Consider the quadratic equation $36 x^{2}+60 x+21=0$.

Let $u^{2}=36 x^{2}$ in the trinomial.

$$
\begin{aligned}
& u^{2} 106 x-21 \\
& =6 x \quad 10 u \\
& \mathrm{f}_{\text {? }} \text { ? }
\end{aligned}
$$

Rewrite the quadratic equation in terms of u. Factor and solve for u.

$$
\begin{aligned}
& u^{2}+10 u+21=0 \\
& a=1 \quad b=10 \quad c=21 \\
& (u+3)(u+7)=0
\end{aligned}
$$

Solve for x.

Let's Practice!
3. Use factoring by substitution to solve the equation below.

$$
\begin{aligned}
& u^{2}=25 x^{2} \\
& u=5 x
\end{aligned} \left\lvert\,\right.
$$

$$
\begin{aligned}
& u^{2}+3 u-18=0 \quad u=5 x \\
& (u+6)(u-3)=0-6=5 x \quad 3=5 x \\
& u=-6 \quad u=3
\end{aligned}
$$

Try It!
4. Use factoring by substitution to solve for x in the equation below.

$$
u^{2}=9 x^{4}
$$

8	-6
$2(4)$	$-4-2$

$$
u=3 x^{2}
$$

$$
\begin{array}{llll}
\left.2(4)\right|^{-4}-2 & u^{2}-6 u+8=0 & \frac{4=3 x^{2}}{3} & \frac{2=3 x^{2}}{3} \\
u-4=0 & (u-4)(v-2)=0 & \frac{4}{3}=x^{2} & \frac{2}{3}=x^{2} \\
u-2=0 & u=4,2 & \pm \sqrt{\frac{4}{3}}=x & \pm \sqrt{\frac{2}{3}}=x \\
\pm \sqrt{\frac{4}{3}}= \pm \frac{2 \sqrt{4} \cdot \sqrt{3}}{\sqrt{3}} \cdot \sqrt{3}=\frac{2 \sqrt{3}}{\sqrt{9}}= \pm \frac{2 \sqrt{3}}{3} & +\frac{\sqrt{2}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}=\frac{\sqrt{6}}{3}
\end{array}
$$

BEAT THE TEST!

1. A rectangle has an area of ${ }^{a} x^{2}-8 x+3$ square units. Which of the following could represent the perimeter of the rectangle in terms of x ?
(A) $2 x-1$
(B) $2 x-3$
(c) $4 x-4$
(1) $8 x-8$

$$
a \cdot c
$$

$3(4)$
$2(6)$
$-\frac{2}{4}-\frac{6}{4}$
$-\frac{1}{2}-\frac{3}{2}$

$$
\begin{aligned}
& 2(2 x-1)+2(2 x-3) \\
& 4 x-2+4 x-6=8 x
\end{aligned}
$$

$$
U=3 \quad u=-1
$$

2. Giovanni factored $16 x^{2}-8 x-3=0$ as $(u-3)(u+1)=0$. Which of the following are solutions) to $16 x^{2}-8 x-3=0$? select all that apply.$\square \quad-1$
园 $-\frac{1}{4}$
$\square \quad 0$
(4) $\frac{3}{4}$
\square

$$
\frac{3}{4}=x
$$

$$
u=4 x
$$

Section 4 topic 2 Solving quadratic equations by factoring 12-4-12-5 p2.notĐboeknber 06, 2019

