Section 4 - Topic 4
Solving Quadratic Equations by Factoring Special Cases - Part 2

$$
a x^{2}+b x+c
$$

Consider the binomial $4 x^{2}-9$. Write the binomial as a trinomial.

Factor the trinomial.

$$
\begin{array}{l|l}
\begin{array}{l}
\text { ac } \\
-36
\end{array} 0 \\
\hline 66 & \frac{6}{4}-\frac{6}{4} \\
& \left(x+\frac{3}{2}\right)\left(x-\frac{3}{2}\right) \\
&
\end{array}
$$

$49 k^{2}-64=0 \quad 4 x^{2}-9$ is an example of the difference of two squares. $7 / c+8=e$
Things to note about the difference of squares: $a^{2}-b^{2}$. $(7 k+8)(7 k-\delta)=0>$ Both terms are perfect squares.
\neq

> > It's the difference of squares, NOT the sum.

$$
7 k=-\gamma
$$

$$
\Rightarrow\left(a^{2}-b^{2}\right)=(a+b)(a-b) . \quad \begin{array}{cc}
7 K-8=0 \\
7 k=8 & k=\frac{8}{7}
\end{array}
$$

Let's Practice!

1. Solve the equation $49 k^{2}=64$.

$$
\text { 2. Factor } 4 x^{2}-36 x^{6} \text {. }
$$

$$
\begin{array}{l|l}
49 & \sqrt{4 x^{2}}=2 x \\
k^{2}=\frac{64}{49} & \sqrt{36 x^{6}}=6 \\
k=+\frac{8}{7} & \left(2 x+6 x^{3}\right)
\end{array}
$$

3. Factor $9 s^{6}-r^{8}$.

Try It!
4. Solve the equation $256 x^{2}=196$.

$$
\begin{aligned}
& x^{2}=\frac{196}{256} \\
& x= \pm \frac{14}{16}= \pm \frac{7}{8}
\end{aligned}
$$

6. Factor $x^{2}+144$.
not possible
7. Factor $32 a^{2} b-50 b^{3}$

$$
\begin{aligned}
& 2 b\left(16 a^{2}-25 b^{2}\right) \\
& 2 b(4 a+5 b)(4 a-5 b)
\end{aligned}
$$

BEAT THE TEST!

1. The perfect square trinomial $a x^{2}+b x+c$ is equivalent to $(X-0,9)(-0,9)$ $(x-0.9)^{2}$. Which of the following is the sum of b and c ?

$$
x^{2}-0,9 x-0,9 x+81
$$

(A) -1.8
(. -0.99
(c) 0.81
$-1.8+.81$
$x^{2}-1.8 x+.81$
(D) 2.61
2. Create an expression that represents the complete factorization of $P(a)=8 a^{3}-98 a$.
 $\longrightarrow(2 a-7)(2 a+7)$ $\alpha a\left(4 a^{2}-49\right)$

$$
\begin{aligned}
& 2 a=0 \\
& a=0
\end{aligned}
$$

Mark with a point on top of the number line the possible

$$
2 a-7=0
$$ solutions for $P(a)=0$.

$$
2 a=7
$$

$$
a=7 / 2
$$

$$
a=3.5
$$

