Section 4 - Topic 5
Complex Numbers - Part 1
Consider \sqrt{n}.
The square root of a number, n, is the number that gives n when multiplied by itself.

Consider \sqrt{n}, where $n<0$.

Why does \sqrt{n} not exist in this case?

$$
\begin{aligned}
& \text { We can't tale the square } \\
& \text { root of a negative number }
\end{aligned}
$$

To work with such radicals, the imaginary number has been defined as $i=\sqrt{-1}$.

$$
{ }^{\prime}=\sqrt{-1}
$$

We are going to discuss imaginary numbers to help solve quadratic equations in later videos.

$$
\begin{aligned}
& i^{2}=\sqrt{-1}^{2} \\
& i^{2}=-1
\end{aligned}
$$

Complete the following imaginary number equations.

$$
\begin{array}{rll}
i & =i & i^{5}=i \\
i^{2} & =-1 & i^{6}=-1 \\
i^{2} \cdot 1^{1} i^{3} & =-i & i^{7}=-i \\
1^{2} \cdot 1^{2} i^{4} & =1 & i^{8}=1
\end{array}
$$

$$
i^{9}=1 \quad i 0=-1 \quad, i=-1 \quad 12=1
$$

Let's Practice!
1.

2.
$i^{30} \cdot 2 / 8 i^{2}=-1$

Try It!
5. $i^{24}=$ 1
7. $i^{74}=\left.i^{2}\right|^{2}=-1$
6. $i^{63} i^{60} i^{3}=-i$

$$
\sqrt{-1}=i
$$

$$
\sqrt{-4}=1 \sqrt[6]{4}=\lambda_{1}
$$

