Section 4 - Topic 6

Complex Numbers - Part 2

We can use imaginary numbers to write complex numbers.
A complex number is a number that can be expressed in the form $a+b i$.
$>a$ and b are real numbers and i is the imaginary unit that satisfies the equation $i^{2}=-1$.
$>a$ is the real part.
$>b i$ is the Mm_{M} g Mary part of the complex number.

Consider the following complex numbers. Draw a box around the real part and a circle around the imaginary part.
$r e a l=\square 2-(32)$
$\operatorname{lmag} \ln a /$ / $5+2 i$
$023-5 i$
$10+2 i$

What is the difference between a simple imaginary number and a complex number?
Complex number lias a + or - sign

Let's Practice!

1. Write an equivalent expression for each of the following.
a. $(3+5 i)+(7-2 i)=10+3 i$
b. $(3-5 i)-(7-2 i)$

$$
\begin{aligned}
& 3-7=-4 \\
& -5 i-(-2 i)=-3 i \quad-4-3 i
\end{aligned}
$$

C. $(7+5 i)(4-8 i)$

$$
\begin{gathered}
28-56 i+20 i-40 i^{2} \\
28-36 i+40 \\
68-36 i
\end{gathered}
$$

"у ":
2. Write an equivalent expression for each of the following.
a. $(5+2 i)+(5-2 i)$

b. $(3-8 i)-(7-4 i)=-4-41^{\prime}$
C. $(3+8 i)(5+2 i)$

$$
\begin{aligned}
& 15+6 i+40 i+16 i^{2} \\
& 15+46 i-16 \\
& \quad-1+46 i
\end{aligned}
$$

BEAT THE TEST!

1. Which of the following is equivalent to $\sqrt{-9}$?
(A) $-9 i$
(170) $-3 i$
(c) $3 i^{2}$
($3 i$
$i \sqrt{9}$ $\pm 3 i$
$\sqrt{-1}=1$

2. The table below shows several complex numbers, where i is the imaginary unit.

Select the cells in the table where the product of the two numbers is a real number.

	$9+3 \boldsymbol{i}$	$7 \boldsymbol{i}$	$\mathbf{- 3}$
$9-3 \boldsymbol{i}$	0	\circ	\circ
$7 \boldsymbol{i}$	\circ	0	\circ
-3	\circ	\circ	0

