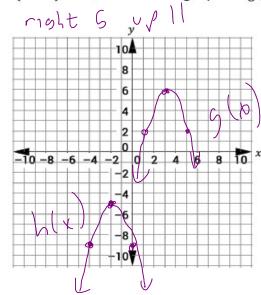
Section 5 – Topic 11 Transformations of Quadratic Functions

q(x) = p(x-2) + 3 is the transformation of the function $p(x) = (x-5)^2 + 1$. Write the function for q(x).

moving
$$p(x)$$
 right 2, up 3
vertex $p(x) = (5, 1)$
vertex $q(x) = (7, 4)$
 $q(x) = (x-7)^2 + 4$

s(x) = r(x+3) - 5 is the transformation of the function

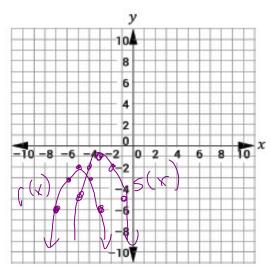

$$r(x) = x^2 - 4$$
. Write the function for $s(x)$.

moving
$$r(x)$$
 left 3, down 5
 $r(x) = (0,-4)$ $s(x) = (-3,-9)$
Vertex vertex

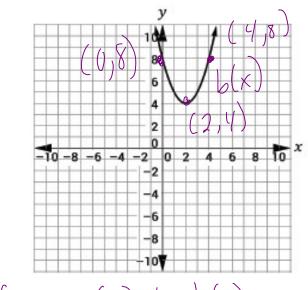
$$S(x) = (x+3)^2 - 9$$

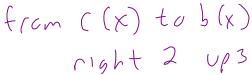
Let's Practice!

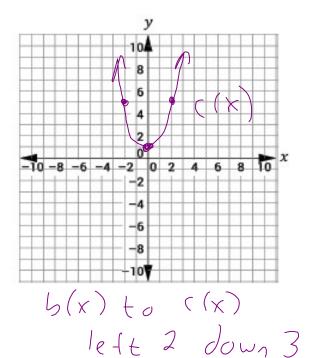
 $-(0+2)^{2}-5$



Let's Practice! $-(c+2)^{2}-5$ 1. Consider the function below. $-(2)^{2}-5$ $-(-2)^{2}-5$ $h(x) = -(x+2)^{2}-5$ $Vertex(-2)^{2}-5$ If g(x) = h(x-5) + 11, sketch the graph of g(x). $Consider the function below. <math display="block">-(2)^{2}-5$ $Vertex(-2)^{2}-5$ $Vertex(-2)^{2}-5$ point (-4,-9)


> vvtex (3,6)
> (5,2) (1,2)


2. The table below models the function r(x), which is a transformation of s(x). Sketch the graph of s(x) on the coordinate plane.


r(x) = s(x+2) - 1					
x' = -7	y' = -6				
x' = -6	y' = -3				
x' = -5	y' = -2				
x' = -4	y' = -3				
x' = -3	y' = -6				

from s(x) to r(x) lett2 down 1 from r(x) to s(x) right 2 up1 3. The graph on the left models b(x) = c(x-2) + 3. Sketch the graph of c(x) on the coordinate plane on the right.

4. The table below models a transformation on f(x).

The table below models a transformation on $f(x)$. Complete the missing values of each ordered pair.								
	f	(x)	f(x + 1)	3) – 1) 1			
	<i>x</i> = 12	y = 145	$x' = \bigcirc$	$y' = \langle y' y' \rangle$				
	$x = \int$	y = 26	x' = 2	y' = 25				
	x = -4	y =	x' = -7	y' = 16				

right 3

Consider the function below.

BEAT THE TEST!

for below.

$$f(x) = -\frac{1}{2}(x+3)^2$$

$$(-3, 0)$$

If g(x) = 4f(x + 3), which of the following statements are true? Select all that apply.

- The graphs open in same direction.
- \square The graph of g(x) is wider than the graph of f(x).
- ☐ The graphs share the same vertex.
- $\not\subseteq f(x) = g(x)$ when x = -5.
- \square The graphs share the same y –intercept.

$$-\frac{1}{2}(-5+3)^{2}$$

$$-\frac{1}{2}(-2)^{2}$$

$$-\frac{1}{2}(4) = -2$$

y-intercept.

$$-2(-5+6)^{2}$$

 $-2(1)^{2}$
 $-2(1)=-2$

$$g(x) = -2(x+6)$$

 $vertex(-6,0)$
 $-\frac{1}{2}(3)^{2}$
 $-\frac{1}{2}(9)$
 $-\frac{1}{2}(6)^{2}$