Section 5 - Topic 13

Classifying Quadratic Functions and Finding Inverses

$$
f(x)=3 x^{2}+4 x+7 \quad f(-x)=3 x^{2}+4 x-7
$$

How can we determine that a function is even?

$$
f(-x)=f(x) \text { symmetric a bout the } y-a x \text { is }
$$

How can we determine that a function is odd?
symmetric about the
Let's Practice!

1. Quadratic functions are

2. Quadratic functions are odd.

Try ir! an even quadratic function has its vertex
3. Sketch the graphs of three even quadratic functions; one with two solutions, one with one solution, and one with no

$\ln (x) x^{2}+8$

\# of salulons
$f(x)=$ one
$g(x)=\operatorname{tho}$
$h(x)=\operatorname{sone}$
4. Give algebraic representations of three even quadratic functions; one with two solutions, one with one solution, and one with no solutions.

How to determine the inverse of a function:
Step 1: Write function notation $f(x)$ as \qquad $f(x)=4 x-7$ step 2: switch the variables y and x. Step 3: \qquad the equation for y.
step 4: Write in function notation \qquad .

There are two ways to determine if two functions are inverses:

Algebraically: Functions $f(x)$ and $g(x)$ are inverses if

Graphically: Functions $f(x)$ and $g(x)$ are inverses if they are reflections over the line \qquad -

Let's Practice!

$$
\begin{aligned}
& \text { Vert } \operatorname{tex}(-3,2) \\
& 3)^{2}+2
\end{aligned}
$$

a. Restrict the domain so that $f(x)$ is invertible.

$$
\begin{aligned}
& \text { a. Restrict the domain so that } f(x) \text { is invertible. } \\
& f(x)=(x+3)^{2}+2 \quad x \leq-3 \rightarrow-f^{-1}(x)=-3-\sqrt{x-2} \\
& f(x)=(x+3)^{2}+2 \quad x \geq-3 \rightarrow f^{-1}(x)=-3+\sqrt{x-2}
\end{aligned}
$$

b. Find the inverse for each domain.
$y=(x+3)^{2}+2 \pm \sqrt{x-2}=y+3$
$x=(y+3)^{2}+2 \quad-3 \quad-3$

$$
f^{-1}(x)=-3 \pm \sqrt{x-2}
$$

$x-2=(y+3)^{2}-3 \pm \sqrt{x-2}=y$
c. Sketch the graph of the quadratic function with the restricted domains and its inverse.

$$
\begin{aligned}
& f(x)=(x+3)^{2}+2 \\
& \quad x=-1, f(x)=6 \\
& x=-3 f(x)=2 \\
& x=-5 f(x)=6
\end{aligned}
$$

$$
x=2, f^{-1}(x)=-3
$$

$$
x=6, f^{-1}(x)=-1
$$

$$
x=6, f^{-1}(x)=-5
$$

Try It!
6. Consider the functions $g(x)=x^{2}-8 x+17$ for $x \geq 4$ and $h(x)=\sqrt{x-1}+4$.
a. Prove that $h(x)$ and $g(x)$ are inverses algebraically.

$$
\begin{aligned}
& h(g(x))=\sqrt{\left(x^{2}-8 x+17\right)-1}+4 \quad h(g(x))=x-4+4 \\
& \sqrt{x^{2}}=x \\
& \sqrt{\left(x^{2}-8 x+16\right)}+4 \\
& \sqrt{16}=4 \quad \sqrt{(x-4)^{2}}+4
\end{aligned}
$$

b. Show that $h(x)$ and $g(x)$ are inverses by graphing.

$$
\begin{aligned}
& \text { graphing. }-8 x+17 \\
& 5(x)=x^{2} \\
& \frac{-b}{2 a}=\frac{8}{2(1)}=4 \quad(4,1) \\
& (4)^{2}-8(4)+17 \\
& 16-32+17=1 \\
& \left(59^{2}-8(5)+17 \quad(5,2)\right. \\
& 25-40+17=2 \\
& (6)^{2}-8(6)+17 \\
& 36-48+17=5
\end{aligned}
$$

BEAT THE TEST!

1. A quadratic function $f(x)$ is shown.

Select symbols and values to restrict the domain of $f(x)$ so that $f^{-1}(x)$, is a function and the domain of $f(x)$ includes $x=-1$.
$=$

