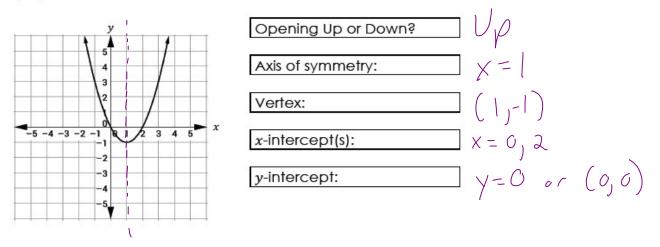
Section 5: Quadratic Equations and Functions – Part 2 Section 5 – Topic 1 Graphing Quadratic Functions in Standard Form

What information can we gather from the graph of the quadratic equation $y = x^2 - 2x$? Label all findings on the graph.



The standard form of a quadratic function is:

 $y = ax^2 + bx + c$

The information we gathered above can also be found by examining each term in the standard form of a quadratic equation. We can use this information to graph a quadratic function.

Let's Practice!

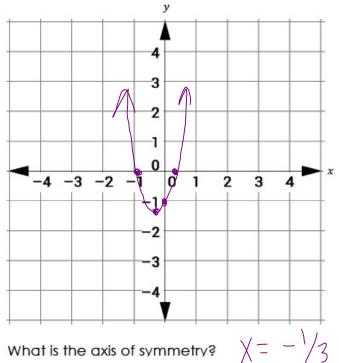
1. Consider the following quadratic function.

$$f(x) = 3x^2 + 2x - 1$$
 ($x = 3$) $y = 2$ ($z = -1$

a. Complete the table below for f(x).

Opening: If $a > 0$, quadratic opens upward. If $a < 0$, quadratic opens downward.	opens up	
Axis of Symmetry: $x = \frac{-b}{2a}$ $\chi - \frac{-b}{2a}$	$X = \frac{-2}{6} = \frac{1}{3}$	$3(-\frac{1}{3})^{2}+2(-\frac{1}{3})-1$
Vertex: x -coordinate of vertex is equal to $\frac{-b}{2a}$. Substitute x -coordinate of the vertex into equation to find y -coordinate of the vertex.	$\begin{pmatrix} -\frac{1}{3}, -\frac{1}{3} \end{pmatrix}$	$\frac{3}{9} - \frac{2}{3} - 1$ $\frac{1}{3} - \frac{2}{3} - \frac{3}{3} = -\frac{1}{3}$
<i>x</i> -intercepts: Substitute 0 for <i>y</i> and solve for <i>x</i> .	$\chi = \frac{1}{3}, -1$	$\frac{-2 \pm \sqrt{(2)^2 + 4(3)(-1)}}{2(3)}$ $-2 \pm \sqrt{16}$
y - y + z = C y-intercept: Substitute 0 for x and solve for y.	Y-1, t=-1	$-2+4 - 2+4 = \frac{1}{3}$ -2-4 = -1

b. Sketch the graph of f(x).



- c. What is the axis of symmetry?
- d. Why do you think the *c* term is not used in the *c* is the *y*-intequation to find the axis of symmetry?

Try It!

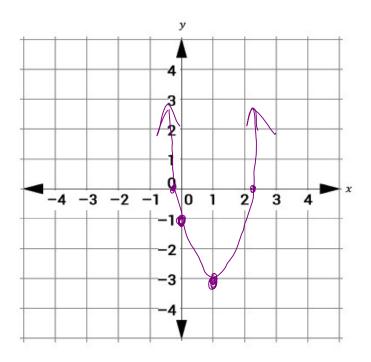
2. Consider the following quadratic function.

$$g(x) = 2x^2 - 4x - 1$$

a. Complete the table below for g(x).

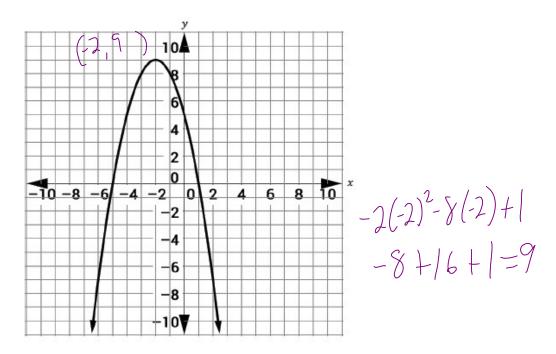
Opening : If $a > 0$, quadratic opens upward. If $a < 0$, quadratic opens downward.	opensup	
Axis of Symmetry: $x = \frac{-b}{2a}$	$\frac{4}{2(2)} = 1$	
Vertex: x -coordinate of vertex is equal to $\frac{-b}{2a}$. Substitute x -coordinate of the vertex into equation to find y -coordinate of the vertex.	$2(1)^{2} - 4(1) - 1$ 2 - 4 - 1 = - 3 (1, - 3)	$4 \pm \sqrt{(-4)^2 - 4(2)(1)}$
<i>x-</i> intercepts: Substitute 0 for <i>y</i> and solve for <i>x</i> .	$\frac{8.9}{4} - \frac{0.9}{4} \\ x = 2.2 x = -0.2$	$\frac{4 \pm \sqrt{16 + 8}}{4}$
y-intercept: Substitute 0 for <i>x</i> and solve for <i>y</i> .	Y-1ntz-1	$\frac{4+524}{4} = \frac{4\pm4.9}{4}$

b. Sketch the graph of g(x).



BEAT THE TEST!

1. Consider the following graph.



Which function has the same maximum as this graph?

(a) $f(x) = -2x^2 - 8x + 1$ (b) $g(x) = -x^2 + 9x + 18$ (c) $h(x) = x^2 + 4x + 15$ (c) $m(x) = 3x^2 + 12x + 22$

2. Consider the function $f(x) = 9x^2 + 54x - 66$.

Over which intervals is the graph increasing, decreasing, or neither? Above each interval on the horizontal axis, write "I" to indicate an increasing interval, "D" to indicate a decreasing interval, or "N" to indicate neither.

