Section 5 - Topic 3

Graphing Quadratic Functions in Vertex Form - Part 1

The vertex form of a quadratic equation is $f(x)=a(x-h)^{2}+k$
Consider the following quadratic function.

$$
f(x)=(x+2)^{2}-4
$$

Complete the table below for $f(x)$.
Opening: If $a>0$, quadratic opens upward. If $a<0$, quadratic opens downward.

$$
\begin{aligned}
& \begin{array}{l}
x \text {-intercepts: substitute } 0 \text { for } \\
y \text { and solve for } x .
\end{array} \\
& 0-2=x
\end{aligned} \quad-2-2=x \quad \begin{aligned}
& 0=(x+2)^{2}-4 \quad 0=x \quad-4=x \\
& 4=(x+2)^{2} \\
& \pm 2=x+2 \rightarrow \pm 2-2=x
\end{aligned}
$$

Vertex: (h, k)

$$
(-2,-4)
$$

\boldsymbol{y}-intercept: Substitute 0 for
Axis of Symmetry: Use the

$$
\begin{aligned}
& \boldsymbol{y} \text {-intercept: Substitute } 0 \text { for } \\
& x \text { and solve for } y . f(x)=(0+2)^{2}-4
\end{aligned}
$$ x-coordinate of the vertex to find the axis of symmetry.

$$
x=-2
$$

$$
f(x)=0(0,0) \quad f(x)=(2)^{2}-4
$$

Sketch the graph of $f(x)$.

Try It!

1. Consider the following quadratic function.

$$
f(x)=-(x-1)^{2}+2
$$

a. Complete the table below for $f(x)$.

Opening: If $a>0$, quadratic opens upward. If $a<0$, quadratic opens downward.
down

$$
0=-(x-1)^{2}+2 \pm \sqrt{2}=x-1
$$

$$
-2=-(x-1)^{2} \quad \pm 1.4=x-1
$$

$$
2=(x-1)^{2} \quad \pm 1.4+1=x
$$

\boldsymbol{x}-intercepts: Substitute 0 for y and solve for x.
$14+1=x$

$z, 4=x$

$$
-0.4=x
$$

\boldsymbol{y}-intercept: Substitute 0 for x and solve for y.

$$
f(x)=-(0-1)^{2}+2
$$

$$
\begin{equation*}
-(-1)^{2}+2 \tag{0,1}
\end{equation*}
$$

$$
-1+2=1
$$

b. Sketch the graph of $f(x)$.

section 5 topic 3 graphing quadratic functions in vertex form 1-13 p5.notebookanuary 13, 2020

