Section 5 - Topic 4
Graphing Quadratic Functions in Vertex Form - Part 2

$$
y=a(x-h)^{2}+k
$$

If an equation is in standard form, we can always complete the square to rewrite it in vertex form.

Consider the function $h(x)=2 x^{2}-8 x+9$. Complete the

$$
\begin{array}{ll}
h(x)=\left(2 x^{2}-8 x\right)+9 & \left(-\frac{4}{2}\right)^{2}=(-2)^{2}=4 \\
h(x)=2\left(x^{2}-4 x+4\right)+9-8 & c(a)= \\
h(x)=2(x-2)^{2}+1 & 4(2)=8
\end{array}
$$

Vertex form of the quadratic equation:

$$
y=2(x-2)^{2}+1
$$

Opening: If $a>0$, quadratic opens upward. If $a<0$, quadratic opens downward.
$u p$

Vertex: $(h, k) \quad(2,1)$

Axis of Symmetry: Use the x-coordinate of the vertex $\quad X=2$ to find the axis of symmetry.
x-intercepts: Substitute 0 for y and solve for x.

$$
\begin{aligned}
& 0=2(x-2)^{2}+1 \\
& -1 \\
& -\frac{1}{2}=\frac{2(x-2)^{2}}{2}
\end{aligned}
$$

$$
-\frac{1}{2}=(x-2)^{2}
$$

none
\boldsymbol{y}-intercepts: Substitute 0 for x and solve for $y . \quad 2(0-2)^{2}+1$
$(0,9) \quad 2(2)^{2}+1=9$

Section 5 topic 4 graphing quadratic functions in vertex form part 2 1-14 p5.natabaeky 14, 2020

Sketch the graph of $h(x)=2 x^{2}-8 x+9$.

Try It!

1. Consider the following function. $\left(\frac{4}{2}\right)^{2}-(2)^{2}=4$

$$
4(3)=12 \quad f(x)=3 x^{2}+12 x+16
$$

a. Complete the square to write $f(x)$ in vertex form.

$$
f(x)=\left(3 x^{2}+12 x\right)+16
$$

$$
f(x)=3\left(x^{2}+4 x+4\right)+16-12
$$

$$
f(x)=3(x+2)^{2}+4
$$

$$
\begin{aligned}
0 & =3(x+2)^{2}+4 \\
-4 & -4=3(x+2)^{2}
\end{aligned}
$$

Opening: If $a>0$, quadratic opens upward. If $a<0$, quadratic opens downward.

$$
\text { Vertex: }(h, k)
$$

$$
(-2,4)
$$

Axis of Symmetry: Use the x-coordinate of the vertex to find the axis of symmetry.

$$
x=-2
$$

\boldsymbol{x}-intercepts: Substitute 0 for y and solve for x.
none

Vertex form of the quadratic equation:

Section 5 topic 4 graphing quadratic functions in vertex form part 2 1-14 p5.natabaeky 14, 2020
\boldsymbol{y}-intercepts: Substitute 0 for x and solve for y.
C. Sketch the graph of $f(x)$.

BEAT THE TEST!

1. Consider the functions $f(x)=5 x^{2}-10 x+2$ and $g(x)=-\frac{1}{5}(x-1)^{2}+2.2$.

$$
\begin{aligned}
& \text { Which } \\
& \text { apply. }
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\left(5 x^{2}-10 x\right)+2 \\
& f(x)=5\left(x^{2}-2 x+1\right)+2-5 \\
& f(x)=5(x-1)^{2}-3 \\
& -\frac{1}{5}(0-1)^{2}+2.2 \quad 5(0-1)^{2}-3 \\
& -\frac{1}{5}(-1)^{2}+2.2 \quad 5(-1)^{2}-3 \\
& \text { at all that } \\
& \text { xis of } \quad 5-2+2.2-2) \\
& 0=-\frac{1}{5}(x-1)^{2}+2.2 \quad 3=5(x-1)^{2} \\
& \left(-2.2=-\frac{1}{5}(x-1)^{2}\right)-5 \quad \frac{3}{5}=(x-1)^{2} \\
& (x) .
\end{aligned}
$$

The graphs of $f(x)$ and $g(x)$ share the same axis of symmetry.
W. The graphs of $f(x)$ and $g(x)$ share the same y-intercept.

- The graphs of $f(x)$ and $g(x)$ share the same x - intercepts.
ㅁ The graphs of $f(x)$ and $g(x)$ open in the same direction.
ㅁ The graph of $f(x)$ is wider than the graph of $g(x)$.

