Section 5 - Topic 6

Converting Quadratic Expressions and Functions

We previously converted quadratic equations from standard form to vertex form.

Let's take a deeper look at converting quadratic equations.
Let's Practice!

1. Convert the following quadratic function to standard form.

$$
\begin{aligned}
f(x)= & (2 x+3)(x-5)+8 x-5 \\
& 2 x^{2}-10 x+3 x-15+8 x-5 \\
& 2 x^{2}+x-20
\end{aligned}
$$

2. Complete the square in the equation to reveal the minimum value of the function it defines. (vesta x)

$$
\begin{aligned}
& y=3 x^{2}-5 x+4 \\
& y=\left(\frac{\left.3 x^{2}-\frac{5 x}{3}\right) \frac{4}{3}}{48}\right. \\
& y=3\left(x^{2}-\frac{5}{3} x+\frac{25}{36}\right)+\frac{4}{3}-\frac{25}{36} \\
& y=3\left(x-\frac{5}{6}\right)^{2}+\frac{23}{36} \\
& \left(\frac{5}{6}, \frac{23}{36}\right)
\end{aligned}
$$

$$
\left(-\frac{5}{3} \cdot \frac{1}{2}\right)^{2}
$$

Try It!
3. The following quadratic function is in vertex form. Write it in standard form.

$$
(x)^{2}
$$

$$
(x)\left(-\frac{1}{2}\right)(2)
$$

$$
\begin{array}{ll}
f(x)= & \frac{2}{5}\left(x-\frac{1}{2}\right)^{2}+\frac{1}{3} \\
& =\frac{2}{5}\left(x^{2}-1 x+\frac{1}{4}\right)+\frac{1}{3} x^{2}-\frac{2}{5} x+\frac{2}{20}+\frac{1}{3} \quad\left(-\frac{1}{2}\right)^{2} \\
f(x)=\frac{2}{5} x^{2}-\frac{2}{5} x+\frac{13}{30}+\frac{1}{3} \\
\frac{20}{20}+\frac{20}{60} \\
\frac{20}{60}=\frac{13}{30}
\end{array}
$$

4. Convert the following quadratic equation into standard form.

$$
\begin{gathered}
{\left[y=\frac{(x-3)^{2}}{4}+\frac{x}{3}-\frac{5}{2}\right] 12} \\
12 y=3(x-3)^{2}+4 x-30 \\
12 y=3\left(x^{2}-6 x+9\right)+4 x-30 \\
12 y=3 x^{2}-18 x+27+4 x-30 \\
\frac{12 y}{12}=\frac{3 x^{2}}{12}-\frac{14 x}{12}-\frac{3}{12} \\
y=\frac{1}{4} x^{2}-\frac{7}{6} x-\frac{1}{4}
\end{gathered}
$$

5. Complete the square in the expression to reveal the vertex.

$$
\begin{aligned}
&-(x+4)(x-3)+5 x \\
&\left(x^{2}-3 x+4 x-12\right)+5 x \\
&\left(x^{2}+x-12\right)+5 x \\
&-x^{2}-x+12+5 x \quad\left(-\frac{4}{2}\right)^{2}= \\
&-x^{2}+4 x+12 \\
&\left(-x^{2}+4 x\right)+12 \\
&-\left(x^{2}-4 x+4\right)+12-(-4) \\
&-(x-2)^{2}=4 \\
&
\end{aligned}
$$

BEAT THE TEST!

1. Match each quadratic expression below with its equivalent expression in standard form.
$\frac{\cap}{} \begin{aligned} & 2(x-3)^{2}-15 \\ & -2(x-3)^{2}+15\end{aligned}, ~$
A. $-2 x^{2}+12 x-3$
B. $2 x^{2}+12 x+3$
$B^{2(x+3)^{2}-15}$
$-2(x+3)^{2}+15$

$$
\begin{aligned}
& 2(x+3)^{2}-15 \\
& 2\left(x^{2}+6 x+9\right)-15
\end{aligned}
$$

C. $-2 x^{2}-12 x-3$
Q. $2 x^{2}-12 x+3$

$$
2 x^{2}+12 x+18-15
$$

$$
\begin{aligned}
& 2(x-3)^{2}-15 \\
& 2\left(x^{2}-6 x+9\right)-15
\end{aligned}
$$

$2 x^{2}-12 x+88-15$
$-2\left(x^{2}-6 x+9\right)+15$

$$
-2 x^{2}+12 x-18+15
$$

