Section 5 - Topic 8

Systems of Equations with Quadratic Equations - Part 1

NASA launched a model rocket from the grounds of Cape Canaveral. The height, in feet, of the rocket with respect to time can be modeled by the function $h(x)=-x^{2}+10 x$, where x is time, in seconds. At the same time, a Navy fleet shot a laser beam from a deck 14 feet above sea level. The laser beam follows a straight path represented by the equation $g(x)=-x+14$.

Model the situation on the graph below.

$$
-x^{2}+10 x=0
$$

Mark on the graph the points where $f(x)=g(x)$.
what do these points represent? Where the laser beam hits the rocket

The rocket and the laser beam model a quadratic-linear system of equations. We can also solve this system algebraically.

The following functions model the system.

$$
\begin{gathered}
f(x)=-x^{2}+10 x \\
g(x)=-x+14
\end{gathered}
$$

$$
\frac{-11 \pm \sqrt{11^{2}-4(-1)(-14)}}{2(-1)}
$$

One equation is a quadratic and has a degree of 2 . The other equation is a linear and has a degree of 1.

Where is $f(x)=g(x)$? Justify your answer algebraically.

$$
\begin{aligned}
& -x^{2}+10 x=-x+14 \\
& +x-14 \quad+x-14 \\
& -x^{2}+11 x-14=0
\end{aligned}
$$

\qquad

$$
\begin{aligned}
& \frac{-11 \pm \sqrt{121-56}}{-2} \\
& \frac{-11 \pm \sqrt{65}}{1.45} \\
& \frac{-11 \pm 8.1}{-2} \quad \frac{-11+8.1}{-2} \\
& \frac{-11-8.1}{-2}
\end{aligned}
$$

Does your algebraic answer support with your graphic solution?
yes

Let's Practice!

1. Consider the following system.

$$
\begin{gathered}
f(x)=3 \\
g(x)=x^{2}-7 x+11
\end{gathered}
$$

Where is $f(x)=g(x)$? Justify your answer algebraically.

$$
0=x^{2}-7 x+11
$$

$$
\begin{aligned}
& x^{2}-7 x+11=3 \quad\left(\frac{7}{2(1)}\right)=\frac{7}{2}-\text { A.0 Graph the system. } \quad(3.5,1,27) \\
& x^{2}-7 x+8=0 \\
& \frac{7 \pm \sqrt{\left(-7^{2}\right)-1(1)(8)}}{2(3,5)^{2}-7(3,5)+11} \\
& 2(1) \quad 12.25-24.5+11=-1.25 \\
& \frac{7 \pm \sqrt{49-32}}{2} \\
& \frac{7 \pm \sqrt{17}}{2} \rightarrow 5.6 \\
& \frac{7+4.1}{2} \quad \frac{11.1}{2} \quad \frac{7-4.1}{2} \frac{2.9}{2}=1.5 \quad(1.5,3) \quad(5.6,3)
\end{aligned}
$$

2. Consider the following system.

$$
\left\{\begin{array}{l}
f(x)=x^{2}-2 x-5 \\
g(x)=-2 x^{2}+5 x+1
\end{array}\right.
$$

Where is $f(x)=g(x)$? Justify your answer algebraically.

$$
\begin{aligned}
& x^{2}-2 x-5=-2 x^{2}+5 x+1 \\
& \text { Graph the system. } \\
& +2 x^{2}-5 x-1 \\
& 3 x^{2}-7 x-6=0 \\
& \frac{7-11}{6}=\frac{-4}{6}=\frac{-2}{3} \\
& \frac{7 \pm \sqrt{(7)^{2}-4(3)}(6)}{2(3)} \quad \frac{7+11}{6}=\frac{18}{6}=3 \\
& \frac{7 \pm \sqrt{49+72}}{6} \begin{array}{c}
(3)^{2}-2(3)-5 \\
9-6-5=-2(3,-2)
\end{array} \\
& \begin{array}{l}
\frac{7 \pm \sqrt{121}}{6}\left(-\frac{2}{3}\right)^{2}-2\left(-\frac{2}{3}\right)-5 \\
\frac{4}{9}+\frac{4}{3}-5 \rightarrow \frac{4}{9}+\frac{12}{9}-\frac{49}{9}
\end{array} \\
& x^{2}-2 x-5 \\
& \frac{2}{2(1)}=1 \\
& -2 x^{2}+5 x+1 \\
& (1)^{2}-2(1)-5 \\
& \frac{-5}{2(-2)}=\frac{-5}{-4}=1.25 \\
& 1-2-5=-6 \\
& -2(1.25)^{2}+5(1.25)+1 \\
& -3.125+6.25+1=4.125 \\
& (1,-6)
\end{aligned}
$$

