Section 2 - Topic 9

Systems of Linear Equations in Three Variables - Part 1

Suppose I have only quarters in my pocket. If I have 75 cents in change, can you tell me how many quarters are in my pocket?

Define a variable to represent the number of quarters.

$$
q
$$

Write an equation that models this situation.

$$
25 q=.75
$$

Solve the equation to find the number of quarters in my pocket.

$$
q=3
$$

Suppose I have only quarters and dimes in my pocket. If I have $\$ 1.50$ in change, can you tell me how many quarters and dimes are in my pocket?

Suppose you have 9 coins in your pocket. How many are quarters? How many are dimes?

Define variables to represent the number of quarters and dimes.

$$
q=\text { quarters } \quad d=\text { d'mes }
$$

Write a system of equations that models this situation.

$$
\begin{aligned}
& (q+d=q)=-100 \\
& .25 q+.10 d=1.50
\end{aligned}
$$

Solve the system to find the number of quarters and dimes in my pocket.

$$
\begin{aligned}
& -.10 g-X O d=-.9 \\
& .2 S_{g}+.10 g=1.50
\end{aligned}
$$

Solves
If we are going to solve a system with 3 unknowns, how many equations must we have?
three

Let's Practice!

1. Solve the following system of equations.

$$
(a, b, c)
$$

$$
\begin{gathered}
a+b-3 c=-7 \\
3 b+c=-8 \\
c=1
\end{gathered} \quad(-1,-3,1)
$$

$$
3 b+1=-8
$$

$$
a+(-3)-3(1)=-7
$$

$$
\frac{3 b}{3}=-\frac{9}{3}
$$

$$
a-3-3=-7
$$

$$
b=-3
$$

2. Solve the following system of equations.

$$
\begin{aligned}
& (m, n, p) \\
& \left(\frac{1}{3}, 0,-2\right) \\
& \text { B) } 3 m-n-p=3 \\
& \text { C) }-6 m+4 n+3 p=-8 \\
& 3\left(\frac{1}{3}\right)-3(0)+p=-1 \\
& 1-0+p=-1 \\
& A+B \\
& \text { BiC } \\
& \begin{array}{l}
3 m-3 n+p=-1 \\
3 m-n-p=3 \\
6 m-4 n=2
\end{array} \\
& \left\{\begin{array}{l}
3 m-n-p=3) 3 \\
-6 m+4 n+3 p=-8 \\
9
\end{array}\right. \\
& \begin{array}{l}
1+p=-1 \\
-1
\end{array} \\
& p=-2 \\
& 6 m-4 n=2 \\
& (3 m+n=1) 4 \\
& 6 m-y_{m}=2 \\
& 12 m+4 n=4 \\
& n=\frac{1}{3} \\
& 3\left(\frac{1}{3}\right)+n=1 \\
& 1+n=1 \\
& \frac{18 m}{18}=\frac{6}{18} \\
& n=0
\end{aligned}
$$

Try It!
3. Solve the following system of equations:

$$
(2,4,2)
$$

$$
\begin{array}{cc}
5 a-5 b+8 c=6 & a+2(4)+2=12 \\
-5(a+2 b+c=12) & a+8+2=12 \\
3 b-c=10 & a+10=12 \\
a=2
\end{array}
$$

$$
\begin{aligned}
& 5 a-5 b+8 c=6 \\
& -5-10 b-5 c=-60 \\
& -15 b+3 c=-54 \\
& (3 b-c=10) 5
\end{aligned}
$$

Section 2 - Topic 10

Systems of Linear Equations in Three Variables - Part 2

Let's Practice!

1. An arena has 49,000 seats that sell for $\$ 25$ on the ground level, $\$ 20$ on the mid-level, and $\$ 15$ on the upper-level. The number of seats on the upper-level equals the total number of seats on the ground level and mid-level combined. Suppose the arena brings in $\$ 882,500$ from a sold-out event. How many seats does each level hold?

Define variables to represent the number of seats in each level.

$$
\begin{aligned}
& g=g \text { round } \quad u=\text { upper } \\
& m=m \text { idelle| }
\end{aligned}
$$

Write a system of equations that models this situation.

$$
\begin{gathered}
9+m+u=49,000 \quad 25 g+20 m+15 u=882,500 \\
u=9+m
\end{gathered}
$$

Use the system of equations to find the solution.

$$
\begin{aligned}
& g+m+(g+m)=4 g, 000 \\
& 25 g+20 m+15(g+m)=882,500 \\
& \begin{array}{ll}
(2 g+2 m=49,000)-20 \quad & -40 g-40 m=-980,000 \\
40 g+35 m=882,500 \quad & 40 g+\frac{35 m}{}=882,500 \\
\frac{-5 m}{5}=\frac{-97,500}{5} \\
2 g+2(19,500)=49,000 & m=19,500 \\
2 g+39,000=49,000 & \text { seats } \\
2 g=10,000 \quad & 5,000+19,500+u=49,000 \\
g=5,000 \text { seats } \quad & 24,500+u=49,000 \\
& 4=24,500 \text { seats }
\end{array}
\end{aligned}
$$

Try It!
2. SaraBeth is making custom jewelry to sell at the school carnival. She purchased round beads for 3 cents each, teardrop shaped beads for 5 cents each, and heartshaped beads for 6 cents each. She bought twice as many round beads as heart shaped beads. SaraBeth bought a total of 450 beads and spent $\$ 18.75$.
a. Write a system of three equations that models how many beads of each type SaraBeth bought and the total amount she spent.
$r+t+h=450$
$.03 r+.05 t+.06 h=18.75$
$r=2 h$
b. Solve your system using any method.

$$
\begin{aligned}
& 2 h+t+h=450 \\
& .06 h+.05 t+.06 h=18.75 \\
& (3 h+t=450): 05 \\
& .12 L+.05 t=18,75 \\
& 2(125)=r
\end{aligned}
$$

$$
\begin{aligned}
& 250 \\
& \text { round } \\
& \begin{array}{cc}
\text { Shape tear } \\
\text { beads } & \text { Shaped }
\end{array}
\end{aligned}
$$

c. How many of each type of bead did SaraBeth purchase?

BEAT THE TEST!

1. The school athletic director had a budget of $\$ 500$ to purchase 164 items for the soccer team. She purchased vests for $\$ 2.50$ each, soccer balls for $\$ 9.25$ each, and cones for $\$ 0.75$ each. She purchased 40 more cones than balls. How many of each item can she purchase?

$$
\begin{array}{ll}
\text { vests }=\underline{60} & v+b+c=164 \\
\text { soccer Balls }=32
\end{array} \quad \begin{aligned}
& b+40=c \quad(b+40 \\
& \text { cones }=72
\end{aligned} \quad 2.50 v+9.25 b+.75 c=500
$$

$$
\begin{aligned}
& v+2 b+40=164 \quad 2.50 v+9.25 b+.75 b+30=500 \\
& (v+2 b=124)-5 \quad 2.50 v+10 b=470 \\
& -5 v-10 b=-620 \\
& 2.50 v+10 b=470 \\
& -2.50 \mathrm{~V}=-150 \\
& V=60 \\
& 60+2 b=124 \\
& 2 b=64 \\
& b=32
\end{aligned}
$$

solving systems of equations with three variables topics 9 and 10 10-10-10-10pBobetebmo 019

