When the divisor of a rational expression is a linear factor in the form $X-C$, you can use a process called
synthetic divisi.0n

Compare the methods of the rational expression below to find the quotient.

$$
\frac{x^{2}+5 x+6}{x+2}
$$



To perform synthetic division, the divisor must be a linear term in the form $x-c$.

Let's Practice!

1. Find the quotient of the rational expression below.

$$
\frac{-24 a+4 a^{3}+12+8 a^{2}}{-4+4 a} \div 4
$$


2. Find the quotient of the rational expression below.

$$
\frac{9 y^{3}+9 y^{2}-y+2}{y+\frac{2}{3}}
$$

$$
\begin{array}{r}
-\frac{2}{3} \left\lvert\, \begin{array}{rrrr}
9 & 9 & -1 & 2 \\
1 & -6 & -2 & 2
\end{array}\right. \\
9 \\
3
\end{array}-3 \begin{aligned}
& 4
\end{aligned}
$$



Try It!
3. Find the quotient of the rational expression below.

$$
\frac{3 u^{3}+11 u^{2}-6 u-18}{u+4}
$$



$$
3 u^{2}-u-2-\frac{10}{u+4}
$$

Try It!
4. Find the quotient of the rational expression below.

$$
\frac{3 x^{3}+2 x^{2}-4 x+1}{x-\frac{1}{3}}
$$


$3 x^{2}+3 x-3$

## BEAT THE TEST!

1. Select all the expressions for $d(x)$ that satisfy the parameters for synthetic division.

$$
\begin{aligned}
& \quad \frac{2 x^{4}-9 x^{3}-4 x^{2}+5 x-13}{d(x)} \\
& d(x)= \\
& \square-9+x \quad x-9 \\
& \square \quad 3 x^{-1}+4 \\
& \boxtimes / x-13 \\
& \boxtimes \quad x-\frac{1}{2} \\
& \square 7 x^{2}-x \\
& \square \quad 5 x-7-4 x=X-7 \\
& \square 6
\end{aligned}
$$

Assignment: Practice workbook
Sections 1-4
"Check your Understanding for Topic 1:
Section 4" (Online)

- Check your understanding is under classlink, algebra nation.

