Section 2 - Topic 6
 Solving Linear Systems - Investigating Graphing,
 Substitution, and Elimination

Methods for solving systems of equations:
> Graphing
> Substitution
> Elimination
> Using a Table of Values
> Successive Approximations
Let's investigate solving systems by graphing to determine the nature of solutions to systems.

Sketch the graph of the following system:

$$
\begin{aligned}
x+y & =3 \\
-3 x+2 y & =-4
\end{aligned}
$$

What is/are the solution(s) to the system? $(2,1)$

Suppose the second line of the original system is replaced with $2 x+2 y=-2$.

Sketch the graph of the system.

$$
\begin{aligned}
& 2 x+2 y=-2 \\
& -2 x \quad-2 x \\
& \frac{2 y}{2}=\frac{-2 x}{2}-\frac{2}{2} \\
& y=-x-1 \\
& \frac{2 y}{2}=\frac{-2 x}{2}-\frac{2}{2} \\
& y=-x-1
\end{aligned}
$$

Make observations about the graph and the solutions) to the new system. They are e p

Suppose the second line of the original system is replaced with $-2 x-2 y=-6$.

Sketch the graph of the system.

$$
\begin{aligned}
& -2 x-2 y=-6 \\
& +2 x \quad+2 x \\
& -\frac{2 y}{-2}=\frac{2 x-6}{-2}=-2 \\
& y=-x+3
\end{aligned}
$$

$$
y=-x+3
$$

new system. They are the same line
Infinitely Many Solutions (IMS)

Use your observations to make a conjecture about the solutions to systems of linear equations.
If the lines intersect, we have

$$
\text { one solution }(x, y)
$$

If the lines are parallel, we have no solutions
If the lines are identical, we have
FMs

Let's investigate solving systems using substitution.
Consider the equations $y=f(x)$ and $y=g(x)$, where $f(x)=2 x-1$ and $g(x)=-2 x+3$.

$$
y=2 x-1 \quad y=-2 x+3
$$

The graphical representation of the system is shown below.

Use the graph to find the solution to the system.

$$
(1,1)
$$

$$
2 x-1=-2 x+3
$$

Consider $f(x)=g(x)$. What is the solution for $x ?{ }^{+}+2 x+2 x$

$$
\begin{array}{rr}
4 x=4 & 4 x-1=3 \\
x=1 & +1+1
\end{array}
$$

Let's investigate solving systems using elimination.
Consider the following system of equations.

$$
\begin{aligned}
& y=2 x-1 \\
& y=-x+2
\end{aligned}
$$

The graphical representation of the system is shown below.

$$
\begin{aligned}
& (1,1) \\
& x=1 \\
& y=\frac{1}{2} x+\frac{1}{2}
\end{aligned}
$$

What is the resulting equation when you add the two equations?

What is the resulting equation when you add the two equations?

$$
\text { (t) } \begin{aligned}
& y=2 x-1 \\
& y=-x+2 \\
& \frac{2 y}{}=\frac{x}{2}+\frac{1}{2}
\end{aligned}
$$

$$
y=\frac{1}{2} x+\frac{1}{2}
$$

What is the resulting equation when you subtract the two equations?

Graph each of these equations on the previous graph.

$$
\begin{aligned}
& \begin{aligned}
y & =2 x-1 \\
-y & =-x+2 \\
\hline & =3 x-3
\end{aligned} \\
& 3=3 x \\
& 1=x
\end{aligned}
$$

Make observations from the graph and use those to explain why you can use the elimination method to solve.

$$
\begin{aligned}
& \text { The new equations intersect at } \\
& \text { solution already given }
\end{aligned}
$$

Let's Practice!

1. Consider the following system.

$$
\begin{aligned}
3 x+2 y & =2 \\
-3 x+2 y & =-4
\end{aligned}
$$

Which method would you use to solve this system of equations? Explain your reasoning.

$$
\begin{aligned}
& \text { Elimination, be cause we can add } \\
& \text { the equation which will eliminate } \\
& \text { the x's. }
\end{aligned}
$$

Try It!

2. Consider the system of equations, $y=f(x)$ and $y=g(x)$, where $f(x)=3 x+2$ and $g(x)=5 x+4$.

$$
y=3 x+2 \quad y=5 x+4
$$

Which method would you use to solve this system of equations? Explain your reasoning.

$$
\begin{aligned}
& \text { Substitution, be cause we can set } \\
& \text { the equations equal to each other }
\end{aligned}
$$

BEAT THE TEST!

1. Consider the following system:

$$
\begin{aligned}
& -2 x+5 y=8 \\
& 2 x+y=4 \\
& -2 x+5 y=8 \\
& \text { (4) } \begin{aligned}
& 2 x+y=4 \\
& \frac{6 y}{6}=\frac{12}{6} \\
& y=2
\end{aligned} \\
& -2 x+5 y=8 \\
& \text { (-) } \begin{aligned}
2 x+y & =4 \\
-4 x+4 y & =4
\end{aligned} \\
& \begin{array}{r}
-x+y=1 \\
+x
\end{array}
\end{aligned}
$$

Part A: Find the solution by graphing the system.

$$
\begin{array}{cc}
-2 x+5 y=8 \Rightarrow & -2 x+5 y=8 \\
2 x+y=4 & +2 x+2 x \\
& \frac{5 y}{5}=\frac{2 x}{5}+\frac{8}{5} \quad y=\frac{2}{5} x+\frac{8}{5}
\end{array}
$$

Part B: Write an equation to replace the second equation . 2 so that the system will have infinitely many solutions.
Replace $2 x+y=4$ with $-4 x+10 y=16$
Part C: Write an equation to replace the second equation $5 y=2 x+2$ so that the system will have no solution.
Replace $2 x+y=4$ with $-2 x+5 y=2 \quad y=\frac{2}{5 x}+\frac{2}{5}$

