Section 2 - Topic 6
 Solving Linear Systems - Investigating Graphing,
 Substitution, and Elimination

Methods for solving systems of equations:
> Graphing
> Substitution
> Elimination
> Using a Table of Values
> Successive Approximations
Let's investigate solving systems by graphing to determine the nature of solutions to systems.

Sketch the graph of the following system:

$$
\begin{aligned}
x+y & =3 \\
-3 x+2 y & =-4
\end{aligned}
$$

$$
\begin{gathered}
x+y=3 \\
-x-x \\
y=-x+3 \\
-3 x+2 y=-4 \\
+3 x+3 x \\
\frac{2 y}{2}=\frac{3 x}{2}-\frac{4}{2} \\
y=\frac{3}{2} x-2
\end{gathered}
$$

What is/are the solutions) to the system?
$(2,1)$

Suppose the second line of the original system is replaced with $2 x+2 y=-2$.

Sketch the graph of the system.

$$
y=-x+3
$$

$2 x+2 y=-2$
$-2 x \quad-2 x$

$$
y=->-1
$$

Make observations about the graph and the solutions) to the new system. parallel
 solus) to the Mural - na Sjution

Suppose the second line of the original system is replaced with $-2 x-2 y=-6$.

Sketch the graph of the system.

$$
y=-x+3
$$

Make observations about the graph and the solutions) to the new system. Same line $=$ same slope it y-int

Use your observations to make a conjecture about the solutions to systems of linear equations.

$$
\text { same lIne } \rightarrow \text { INS }\left(\begin{array}{c}
\text { Infinitely } \\
\text { Many } \\
\text { solutions }
\end{array}\right)
$$

Let's investigate solving systems using substitution.
Consider the equations $y=f(x)$ and $y=g(x)$, where $f(x)=2 x-1$ and $g(x)=-2 x+3$.
$y=2 x-1 \quad y=-2 x+3$
The graphical representation of the system is shown below.

$$
\begin{aligned}
& 2 x-y=-2 x+3 \\
&+2 x+1+2 x+1 \\
& \frac{4 x}{4}=\frac{4}{4} x=1 \\
& y=2(1)-1 \\
& y=2-1 \\
& y=1
\end{aligned}
$$

Use the graph to find the solution to the system.

Consider $f(x)=g(x)$. What is the solution for x ?

1~+1-:n...nt:~~+? solving systems using elimination. a) $y=\frac{1}{2} x+\frac{1}{2}$
$y=2 x-1$
b) $x=1$ $y=-x+2$

$$
\begin{aligned}
& \left.\left.\begin{array}{l}
y=2 x-1 \\
y=-x+2
\end{array}\right) \quad \text { (t) } \begin{array}{rl}
y & =2 x-1 \\
3 y & =-2 x+4 \\
3 y & =
\end{array}\right]=\frac{3}{3}
\end{aligned}
$$

The graphical representation of the system is shown below.

$$
\frac{3 y}{3}=\frac{3}{3} \quad y=
$$

$$
\begin{aligned}
& 1=2 x-1 \\
& +1
\end{aligned}
$$

$$
\frac{2=2 x}{2} \quad x=1
$$

What is the resulting equation when you add the two equations?

What is the resulting equation when you add the two $y=2 x-1$ equations?

$y=\frac{1}{2} x+\frac{1}{2}$ $y=-x+2$

What is the resulting equation when you subtract the twa equations?

$$
\begin{aligned}
& 0=3 x-3 \\
& 3=3 x
\end{aligned} \quad x=1
$$

Graph each of these equations on the previous graph.

Make observations from the graph and use those to explain why you can use the elimination method to solve.

$$
\begin{aligned}
& \text { Both equations intersect at the } \\
& \text { solution }
\end{aligned}
$$

Let's Practice!

1. Consider the following system.

$$
\begin{aligned}
3 x+2 y & =2 \\
-3 x+2 y & =-4
\end{aligned}
$$

graphing
elimination

Which method would you use to solve this system of
is system of substitution equations? Explain your reasoning.

$$
\begin{aligned}
& \text { Elimination, because the } \times \text { '\$ are } \\
& \text { Inverse of each other and the terms are } \\
& \text { lined up in columns. }
\end{aligned}
$$

Try It!
2. Consider the system of equations, $y=f(x)$ and $y=g(x)$, where $f(x)=3 x+2$ and $g(x)=5 x+4$.

Which method would you use to solve this system of equations? Explain your reasoning.

$$
\begin{aligned}
& \text { Substitution, be cause both } \\
& \text { equations ar set equal to the } \\
& \text { same variable. }
\end{aligned}
$$

BEAT THE TEST!

1. Consider the following system:

$$
\begin{gathered}
-2 x+5 y=8 \\
2 x+y=4
\end{gathered}
$$

$\frac{5 y}{5}=\frac{2 x}{5} \frac{8}{5}$

$$
y=\frac{2}{5} x+\frac{8}{5}
$$

Part A: Find the solution by graphing the system.

$$
\begin{gathered}
-2 x+5 y=8 \\
2 x+y=4
\end{gathered}
$$

Part B: Write an equation to replace the second equation so that the system will have infinitely many solutions.

$$
-4 x+10 y=16
$$

Part C: Write an equation to replace the second equation so that the system will have no solution.

$$
-2 x+5 y=4
$$

